WEIGHTED COMPOSITION OPERATORS FROM BERGMAN SPACES INTO WEIGHTED BLOCH SPACES

Songxiao Li

ABSTRACT. In this paper we study bounded and compact weighted composition operator, induced by a fixed analytic function and an analytic self-map of the open unit disk, from Bergman space into weighted Bloch space. As a corollary, obtain the characterization of composition operator from Bergman space into weighted Bloch space.

1. Introduction

Let D be the open unit disk in the complex plane and $\varphi: D \to \mathbb{R}$ D be an analytic self map, the composition operator C_{φ} with symbol φ is defined by $C_{\varphi}(f) = f(\varphi(z))$ for f analytic on D. It is a well know consequence of Littlewood's subordination principle that φ induces through composition a bounded linear operator on the classical Hardy and Bergman spaces. It is interesting to provide a function theoretic characterization of when φ induces a bounded or compact composition operator on various spaces, the book [2] contains plenty of information. Problems of this kind were studied recently for composition operators between Bloch type spaces and Hardy and Besov spaces [9], between Bloch spaces and Dirichlet space [7], to mention only some related work. Let u be a fixed function on D, we can define a linear operator uC_{φ} on the space of analytic functions on D, called a weighted composition operator, by $uC_{\varphi}f = u \cdot (f \circ \varphi)$ for a function f analytic on D. We can regard this operator as a generalization of multiplication operator and a composition operator.

Received December 17, 2003.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B35; Secondary 30H05.

Key words and phrases: weighted composition operator, Bergman space, weighted Bloch space.

The author is partially supported by the NNSF(10371051) and ZJNSF(102025).

Let dA denote Lebesgue area measure in the unit disk D normalized so that A(D) = 1. If $0 , <math>-1 < \alpha < \infty$, the weighted Bergman space A^p_{α} is the set of all analytic functions f on the unit disk D such that

$$||f||_{A^p_{\alpha}}^p = \int_D |f(z)|^p (1-|z|^2)^{\alpha} dA(z) < \infty.$$

When $\alpha = 0$, A^p is called Bergman space, we denote $||f||_{A^p}$ by $||f||_p$. It is clear that $A^q \subset A^p$, if $0 . Note that <math>||f||_p$ is a true norm if and only if $1 \le p < \infty$. When $0 , <math>A^p$ is an F-space with respect to the translation-invariant metric defined by $d_p(f,g) = ||f-g||_p^p$.

The growth of functions in weighted Bergman spaces is essential in our study, the following sharp estimate (see Lemma 3.2 of [4]) will be useful.

LEMMA 1.1. Let $f \in A^p_{\alpha}$, then for every point z in D we have

$$|f(z)| \le \frac{\|f\|_{A^p_\alpha}}{(1-|z|^2)^{\frac{2+\alpha}{p}}}.$$

An analytic function f on D is said to belong to the Bloch space $\mathcal B$ if

$$B(f) = \sup_{z \in D} (1 - |z|^2)|f'(z)| < \infty.$$

The expression B(f) defines a seminorm while the natural norm is given by $||f||_{\mathcal{B}} = |f(0)| + B(f)$. It makes \mathcal{B} into a conformally invariant Banach space.

An analytic function f on D is said to belong to weighted Bloch space \mathcal{B}_{log} if

$$||f||_{\mathcal{B}_{log}} = \sup_{z \in D} (1 - |z|^2) \log \frac{2}{1 - |z|^2} |f'(z)| < \infty.$$

The expression $||f||_{\mathcal{B}_{log}}$ defines a seminorm while the natural norm is given by $||f||_{log} = |f(0)| + ||f||_{\mathcal{B}_{log}}$. It makes \mathcal{B}_{log} into a Banach space. In [10], Zhu proved that for $f \in H(D)$, $f\mathcal{B} \subset \mathcal{B}$ if and only if $f \in H^{\infty} \cap \mathcal{B}_{log}$. In [1], K.R.M.Attele proved that for $f \in L_a^2(D)$, the Hankel operator $L_a^1 \to L^1$ is bounded if and only if $f \in \mathcal{B}_{log}$.

In [6], Perez-Gonzalez and Xiao studied composition operator from Hardy space into Bloch space. In [5], Ohno studied the weighted composition operators between H^{∞} and the Bloch space. In [8], Yoneda studied the boundedness and compactness of composition operator on \mathcal{B}_{log} . In this paper, we study the boundedness and compactness of weighted composition operators from Bergman space into weighted Bloch space.

2. Main Theorem and Proof

In this section we will state and prove the main theorems of this paper.

THEOREM 2.1. Let φ be an analytic self-map of D and u be an analytic function on the unit disk D and $1 \le p < \infty$ such that

(1)
$$N = \sup_{z \in D} \frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)^{2/p}} \log \frac{2}{1 - |z|^2} |u'(z)| < \infty.$$

Then $uC_{\varphi}: A^p \to \mathcal{B}_{log}$ is bounded if and only if the following (i) and (ii) are satisfied:

(i)
$$u \in \mathcal{B}_{log}$$
;

(ii)

(2)
$$M = \sup_{z \in D} \frac{1 - |z|^2}{(1 - |\varphi(z)|^2)^{1 + 2/p}} \log \frac{2}{1 - |z|^2} |u(z)\varphi'(z)| < \infty$$

PROOF. Suppose that $u \in \mathcal{B}_{log}$ and (2) holds. It follows from a theorem of Hardy-Littwood and Flett [3] that, whenever $f \in A^p$, then its derivative $f' \in A^p_p$, and there exists a positive constant c_p such that $||f'||_{A^p_p} \leq c_p ||f||_p$. By Lemma 1.1 we get

$$|f'(z)| \le \frac{\|f'\|_{A_p^p}}{(1-|z|^2)^{(2+p)/p}} \le \frac{c_p \|f\|_p}{(1-|z|^2)^{(2+p)/p}}$$

independently of f in A^p . Then for arbitrary z in D we have

$$(1 - |z|^2) \log \frac{2}{1 - |z|^2} |(uC_{\varphi}f)'(z)|$$

$$= (1 - |z|^2) \log \frac{2}{1 - |z|^2} |u'(z)f(\varphi(z)) + u(z)(f \circ \varphi)'(z)|$$

$$\leq (1 - |z|^2) \log \frac{2}{1 - |z|^2} |u'(z)| |f(\varphi(z))|$$

$$+ (1 - |z|^2) \log \frac{2}{1 - |z|^2} |f'(\varphi(z))| |u(z)\varphi'(z)|$$

$$\leq (1 - |z|^{2}) \log \frac{2}{1 - |z|^{2}} |u'(z)| \frac{||f||_{p}}{(1 - |\varphi(z)|^{2})^{2/p}} \\
+ c_{p} (1 - |z|^{2}) \log \frac{2}{1 - |z|^{2}} |u(z)\varphi'(z)| \frac{||f||_{p}}{(1 - |\varphi(z)|^{2})^{1 + 2/p}} \\
\leq \frac{(1 - |z|^{2})}{(1 - |\varphi(z)|^{2})^{2/p}} \log \frac{2}{1 - |z|^{2}} |u'(z)| ||f||_{p} \\
+ c_{p} \frac{(1 - |z|^{2})}{(1 - |\varphi(z)|^{2})^{1 + 2/p}} \log \frac{2}{1 - |z|^{2}} |u(z)\varphi'(z)| ||f||_{p} \\
\leq (N + c_{p}M) ||f||_{p}$$

Consequently, $uC_{\varphi}f \in \mathcal{B}_{log}$. In addition to this, Lemma 1.1 yields

$$|(uC_{\varphi}f(0)| \le \frac{|u(0)| \|f\|_p}{(1-|\varphi(0)|^2)^{2/p}}.$$

The last two inequalities show that $\|uC_{\varphi}f\|_{log} \leq const \cdot \|f\|_{p}$. Hence $uC_{\varphi}: A^{p} \to \mathcal{B}_{log}$ is bounded.

Conversely, suppose that $uC_{\varphi}: A^p \to \mathcal{B}_{log}$ is bounded. Then it is evident that $u \in \mathcal{B}_{log}$, and

(3)
$$\sup_{z \in D} (1 - |z|^2) \log \frac{2}{1 - |z|^2} |u(z)\varphi'(z)| < \infty.$$

For $\lambda \in D$, let

$$f(z) = \left(\frac{1 - |\varphi(\lambda)|^2}{(1 - \overline{\varphi(\lambda)}z)^2}\right)^{2/p}.$$

Then $f \in A^p$ and $||f||_p \le 1$

$$\| uC_{\varphi} \| \ge \| uC_{\varphi}f \|_{\mathcal{B}_{log}}$$

$$\ge \| \frac{4}{p} \frac{1 - |\lambda|^{2}}{(1 - |\varphi(\lambda)|^{2})^{1 + 2/p}} \log \frac{2}{1 - |\lambda|^{2}} |u(\lambda)\overline{\varphi(\lambda)}\varphi'(\lambda)|$$

$$- \frac{(1 - |\lambda|^{2})}{(1 - |\varphi(\lambda)|^{2})^{2/p}} \log \frac{2}{1 - |\lambda|^{2}} |u'(\lambda)||$$

Since

$$\sup_{z \in D} \frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)^{2/p}} \log \frac{2}{1 - |z|^2} |u'(z)| < \infty,$$

(4)
$$\frac{1-|\lambda|^2}{(1-|\varphi(\lambda)|^2)^{1+2/p}}\log\frac{2}{1-|\lambda|^2}|u(\lambda)\overline{\varphi(\lambda)}\varphi'(\lambda)|<\infty.$$

Thus, for a fixed δ , $0 < \delta < 1$, by (4)

$$\sup\left\{\frac{1-|\lambda|^2}{(1-|\varphi(\lambda)|^2)^{1+2/p}}\log\frac{2}{1-|\lambda|^2}|u(\lambda)\varphi'(\lambda)|:\lambda\in D, |\varphi(\lambda)|>\delta\right\}<\infty.$$

For $\lambda \in D$ such that $|\varphi(\lambda)| \leq \delta$, we have

$$\frac{1-|\lambda|^2}{(1-|\varphi(\lambda)|^2)^{1+2/p}}\log\frac{2}{1-|\lambda|^2}|u(\lambda)\varphi'(\lambda)|$$

$$\leq \frac{1}{(1-\delta^2)^{1+2/p}}(1-|\lambda|^2)\log\frac{2}{1-|\lambda|^2}|u(\lambda)\varphi'(\lambda)|$$

and so by (3)

$$\sup\left\{\frac{1-|\lambda|^2}{(1-|\varphi(\lambda)|^2)^{1+2/p}}\log\frac{2}{1-|\lambda|^2}|u(\lambda)\varphi'(\lambda)|:\lambda\in D, |\varphi(\lambda)|\leq \delta\right\}<\infty.$$

Consequently by (5) and (6), we have

$$\sup_{\lambda \in D} \frac{1 - |\lambda|^2}{(1 - |\varphi(\lambda)|^2)^{1 + 2/p}} \log \frac{2}{1 - |\lambda|^2} |u(\lambda)\varphi'(\lambda)| < \infty.$$

We finish the proof.

Theorem 2.2. Let φ be an analytic self-map of D and u be an analytic function on the unit disk D and $1 \le p < \infty$ such that

$$N = \sup_{z \in D} \frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)^{2/p}} \log \frac{2}{1 - |z|^2} |u'(z)| < \infty.$$

Suppose that uC_{φ} exists as a bounded operator from A^p into \mathcal{B}_{log} , then $uC_{\varphi}: A^p \to \mathcal{B}_{log}$ is compact if and only if the following (i) and (ii) are satisfied:

(i)
$$\lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)}{(1-|\varphi(z)|^2)^{2/p}} \log \frac{2}{1-|z|^2} |u'(z)| = 0,$$

(ii)
$$\lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)}{(1-|\varphi(z)|^2)^{1+2/p}} \log \frac{2}{1-|z|^2} |u(z)\varphi'(z)| = 0.$$

PROOF. Assume (i) and (ii) hold, in order to prove that uC_{φ} is compact, it suffices to show that if $\{f_n\}$ is a bounded sequence in A^p that converges to 0 uniformly on compact subsects of D, then $\|uC_{\varphi}f_n\|_{log} \to 0$. This criterion for compactness follows by standard arguments similar to those outlined in proposition 3.11 of [2], for example. Let $\{f_n\}$ be

a sequence in A^p with $||f_n||_p \leq 1$ and $f_n \to 0$ uniformly on compact subsets of D. By the assumption, for any $\epsilon > 0$, there is a constant $\delta, 0 < \delta < 1$, such that $\delta < |\varphi(z)| < 1$ implies

$$\frac{(1-|z|^2)}{(1-|\varphi(z)|^2)^{2/p}}\log\frac{2}{1-|z|^2}|u'(z)|<\epsilon/2$$

and

$$\frac{(1-|z|^2)}{(1-|\varphi(z)|^2)^{1+2/p}}\log\frac{2}{1-|z|^2}|u(z)\varphi'(z)|<\epsilon/2.$$

Let $K = \{w \in D : |w| \le \delta\}$. Note that K is a compact subsect of D, then

$$\| uC_{\varphi}f_{n} \|_{log} = \sup_{z \in D} (1 - |z|^{2}) \log \frac{2}{1 - |z|^{2}} |(uC_{\varphi}f_{n})'(z)|$$

$$\leq \sup_{z \in D} (1 - |z|^{2}) \log \frac{2}{1 - |z|^{2}} |u'(z)f_{n}(\varphi(z))|$$

$$+ \sup_{z \in D} (1 - |z|^{2}) \log \frac{2}{1 - |z|^{2}} |u(z)f'_{n}(\varphi(z))\varphi'(z)|$$

$$\leq \sup_{\{z \in D: \varphi(z) \in K\}} (1 - |z|^{2}) \log \frac{2}{1 - |z|^{2}} |u'(z)f_{n}(\varphi(z))|$$

$$+ \sup_{\{z \in D: \varphi(z) \in K\}} (1 - |z|^{2}) \log \frac{2}{1 - |z|^{2}} |u(z)\varphi'(z)| |f'_{n}(\varphi(z))| + \epsilon$$

$$\leq \| u \|_{log} \sup_{w \in K} |f_{n}(w)| + M \sup_{w \in K} (1 - |w|^{2})^{1 + 2/p} |f'_{n}(w)| + \epsilon,$$

where

$$M = \sup \{ \frac{(1-|z|^2)}{(1-|\varphi(z)|^2)^{1+2/p}} \log \frac{2}{1-|z|^2} |u(z)\varphi'(z)| : z \in D \}.$$

As $n \to \infty$, $\| uC_{\varphi}f_n \|_{log} \to 0$. Consequently, $uC_{\varphi}: A^p \to \mathcal{B}_{log}$ is compact.

Conversely, suppose $uC_{\varphi}: A^p \to \mathcal{B}_{log}$ is compact. Let $\{z_n\}$ be a sequence in D such that $|\varphi(z_n)| \to 1$ as $n \to \infty$. Let

$$f_n(z) = (rac{1 - |arphi(z_n)|^2}{(1 - \overline{arphi(z_n)}z)^2})^{rac{2}{p}}.$$

Then $f_n \in A^p$ and $||f_n|| \le 1$ and f_n converges to 0 uniformly on compact subsets of D. Since uC_{φ} is compact, we have $||uC_{\varphi}f_n||_{log} \to 0$ as $n \to \infty$. Thus

$$0 \leftarrow \parallel uC_{\varphi}f_n \parallel_{log}$$

$$\geq \sup_{z \in D} (1 - |z|^2) \log \frac{2}{1 - |z|^2} |(uC_{\varphi}f_n)'(z)|$$

$$\geq |\frac{(1 - |z_n|^2)}{(1 - |\varphi(z_n)|^2)^{2/p}} \log \frac{2}{1 - |z_n|^2} |u'(z_n)|$$

$$- \frac{4}{p} \frac{(1 - |z_n|^2)}{(1 - |\varphi(z_n)|^2)^{1 + \frac{2}{p}}} \log \frac{2}{1 - |z_n|^2} |u(z_n)\overline{\varphi(z_n)}\varphi'(z_n)||.$$

So we get

(7)
$$\lim_{|\varphi(z_n)| \to 1} \frac{(1 - |z_n|^2)}{(1 - |\varphi(z_n)|^2)^{2/p}} \log \frac{2}{1 - |z_n|^2} |u'(z_n)| \\ = \lim_{|\varphi(z_n)| \to 1} \frac{4}{p} \frac{(1 - |z_n|^2)}{(1 - |\varphi(z_n)|^2)^{1+2/p}} \log \frac{2}{1 - |z_n|^2} |u(z_n)\varphi'(z_n)|.$$

Next let

$$g_n(z) = \frac{1 - |\varphi(z_n)|^2}{(1 - \overline{\varphi(z_n)}z)^{1 + \frac{2}{p}}} - (\frac{1}{1 - \overline{\varphi(z_n)}z})^{2/p},$$

for a sequence $\{z_n\}$ in D such that $|\varphi(z_n)| \to 1$, then $g_n(z)$ is a bounded sequence in A^p and $g_n(z) \to 0$ uniformly on every compact subset of D, $g_n(\varphi(z_n)) = 0$ and

$$g'(\varphi(z_n)) = \frac{\overline{\varphi(z_n)}}{(1 - |\varphi(z_n)|^2)^{1+2/p}}.$$

Then

$$0 \leftarrow \| uC_{\varphi}g_{n} \|_{log}$$

$$\geq \sup_{z \in D} (1 - |z|^{2}) \log \frac{2}{1 - |z|^{2}} |(uC_{\varphi}g_{n})'(z)|$$

$$\geq \frac{1 - |z_{n}|^{2}}{(1 - |\varphi(z_{n})|^{2})^{1 + 2/p}} \log \frac{2}{1 - |z_{n}|^{2}} |u(z_{n})\overline{\varphi(z_{n})}\varphi'(z_{n})|.$$

Thus we can get

$$\lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)}{(1-|\varphi(z)|^2)^{1+2/p}} \log \frac{2}{1-|z|^2} |u(z)\varphi'(z)| = 0,$$

and so by (7), we have

$$\lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)}{(1-|\varphi(z)|^2)^{2/p}} \log \frac{2}{1-|z|^2} |u'(z)| = 0.$$

From the last two theorems, we can easily obtain the following two theorems:

THEOREM 2.3. Let φ be an analytic self-map of D and $1 \leq p < \infty$. Then $C_{\varphi}: A^p \to \mathcal{B}_{log}$ is bounded if and only if the following is satisfied:

$$\sup_{z \in D} \frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)^{1 + 2/p}} \log \frac{2}{1 - |z|^2} |\varphi'(z)| < \infty.$$

THEOREM 2.4. Let φ be an analytic self-map of D and $1 \leq p < \infty$. Suppose $C_{\varphi}: A^p \to \mathcal{B}_{log}$ is bounded, then $C_{\varphi}: A^p \to \mathcal{B}_{log}$ is compact if and only if the following is satisfied:

$$\lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)}{(1-|\varphi(z)|^2)^{1+2/p}} \log \frac{2}{1-|z|^2} |\varphi'(z)| = 0.$$

References

- K. R. M. Attele, Toeplitz and Hankel operators on Bergman space, Hokkaido Math. J. 21(1992), 279–293.
- [2] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL. 1995.
- [3] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
- [4] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math. 1999, Springer, New York, Berlin, 2000.
- [5] S. Ohno, Weighted composition operators between H[∞] and the Bloch space, Taiwanese J. Math. 5 (2001), 555−563.
- [6] F. Perez-Gonzalez and J. Xiao, Bloch-Hardy pullbacks, Acta. Sci. Math. (Szeged), 67 (2001), 709–718.
- [7] W. Smith, Composition operators between some classical spaces of analytic function, Proceedings of the International Conference on Function Theory, Seoul, Korea, 2001, 32–46.
- [8] R. Yoneda, The composition operators on weighted Bloch space, Arch. Math. 78 (2002), 310-317.
- [9] R. Zhao, Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl. 233 (1999), 749-766.
- [10] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.

Department of Mathematics JiaYing University 514015 MeiZhou, GuangDong, China E-mail: lsx@mail.zjxu.edu.cn