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WEIGHTED COMPOSITION OPERATORS FROM
BERGMAN SPACES INTO WEIGHTED BLOCH SPACES

SoNGXI1AO L1

ABSTRACT. In this paper we study bounded and compact weighted
composition operator, induced by a fixed analytic function and an
analytic self-map of the open unit disk, from Bergman space into
weighted Bloch space. As a corollary, obtain the characterization
of composition operator from Bergman space into weighted Bloch
space.

1. Introduction

Let D be the open unit disk in the complex plane and ¢ : D —
D be an analytic self map, the composition operator C, with symbol
p is defined by Cy,(f) = f(p(z)) for f analytic on D. It is a well
know consequence of Littlewood’s subordination principle that ¢ induces
through composition a bounded linear operator on the classical Hardy
and Bergman spaces. It is interesting to provide a function theoretic
characterization of when ¢ induces a bounded or compact composition
operator on various spaces, the book [2] contains plenty of information.
Problems of this kind were studied recently for composition operators
between Bloch type spaces and Hardy and Besov spaces [9], between
Bloch spaces and Dirichlet space [7], to mention only some related work.
Let u be a fixed function on D, we can define a linear operator uC,, on
the space of analytic functions on D, called a weighted composition
operator, by uCy,f = u- (f o p) for a function f analytic on D. We can
regard this operator as a generalization of multiplication operator and
a composition operator.
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Let dA denote Lebesgue area measure in the unit disk D normalized
so that A(D)=1. If 0 < p < 400, —1 < a < o0, the weighted Bergman
space AL is the set of all analytic functions f on the unit disk D such
that

117, = / FP(L - [22)%dA(2) < oo

When a = 0, AP is called Bergman space, we denote || f||a» by ||f[lp- It
is clear that A7 C AP, if 0 < p < ¢ < 0o. Note that || f||, is a true norm
ifand only if 1 < p < co. When 0 < p < 1, AP is an F-space with respect
to the translation-invariant metric defined by d,(f,g) = ||f — g5

The growth of functions in weighted Bergman spaces is essential in
our study, the following sharp estimate (see Lemma 3.2 of [4]) will be
useful.

LEMMA 1.1. Let f € A%, then for every point z in D we have

so< e
T -

An analytic function f on D is said to belong to the Bloch space B if
B(f) = sup(1 — |2[*)|f'(2)] < oo
zeD

The expression B(f) defines a seminorm while the natural norm is given
by (|fllz = |f(0)|+B(f). It makes B into a conformally invariant Banach
space.

An analytic function f on D is said to belong to weighted Bloch space
Byog if

11, = s0p(1 = 2o 717 (2)| < oo

The expression || f| 5, deﬁnes a seminorm while the natural norm is
given by || fllieg = If(O)] + | fllB,,- It makes By, into a Banach space.
In [10], Zhu proved that for f ¢ H(D), fB ¢ B if and only if f €
H*® By In [1], K.R.M.Attele proved that for f € L2(D), the Hankel
operator L} — L' is bounded if and only if f € Bjog.

In [6], Perez-Gonzalez and Xiao studied composition operator from
Hardy space into Bloch space. In [5], Ohno studied the weighted compo-
sition operators between H* and the Bloch space. In [8], Yoneda stud-
ied the boundedness and compactness of composition operator on Bjyg.
In this paper, we study the boundedness and compactness of weighted
composition operators from Bergman space into weighted Bloch space.
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2. Main Theorem and Proof

In this section we will state and prove the main theorems of this
paper.

THEOREM 2.1. Let ¢ be an analytic self-map of D and u be an
analytic function on the unit disk D and 1 < p < oo such that

1.2
(1) N = sup (1= =1 log 7 _2|zl2|u’(z)| < 0.

zeD (1= [p(2)|2)/P

Then uC, : AP — B,y is bounded if and only if the following (i) and
(ii) are satisfied:
(Z) ue Blog§

(i)

B 1—|z|? 2
(2) M = sup log T2

zeD (1 — |p(2)[2)1+2/P

5 lu(z)¢’(2)] < o0

PROOF. Suppose that u € Bjog and (2) holds. It follows from a
theorem of Hardy-Littwood and Flett [3] that, whenever f € AP, then
its derivative f' € A}, and there exists a positive constant ¢, such that
/'l 4z < cpl| fllp- By Lemma 1.1 we get

Il ],

|f(2)] < (L |zP)Ctp = (1= |-]2)@0)/p

independently of f in AP. Then for arbitrary z in D we have

(1= 1) log =5l (uCo ) (2)
= (1= =) og T () (62 + w2 (S o 9 ()
)17 (=)

|
2
(1= |2 log 71 (e ()0 (2)

1— 2|2

< (1-12*)log
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2 £ e
1—[2f? (1~ lp(2)2)2/P

2 ' I f llp
1—|z)? lu(z)¢’(2)] (1 — |p(z)[2)1+2/p

1— |22 2 ,
1 E ,SO(L)||2))2/p log 1= |22 [u'(2)[|| £l

a-lf)

A= @R 21
< (N+cepM) | fllp

Consequently, uC,, f € Byyg. In addition to this, Lemma 1.1 yields

[u)| I f llp
1= lp(0)[?)2/7°
The last two inequalities show that || uC,f [li0g< const- || f ||,- Hence
uCy, : AP — B,y is bounded.
Conversely, suppose that uC, : AP — By, is bounded. Then it is
evident that u € Byy,, and

< (1- 4% log

' (2)]

+ep(l - |Z|2) log

+o Z e )

[(uCo f0)] <

2 /
(3) jgg(l — |2|*) log m[u(z)@ (2)] < .

For A € D, let
. iﬂ 2/p.
flz)= ((1—¢(A) ; )
Then f € A and || f [,< 1
I uqo 12 uCof |5,
> 1~ AP . 2
B l_(l— |p(N)|2)1+2/p 1= |2
(1=1AP) /
- (1 — |(N)]2)2/p 081 N2 [u" (M|

(M)W’ (A)]

Since
Al
2D (1—|p(2)[)¥P " 1— |z

E |w/(2)] < oo,

1— A2 2 .
(4) (1- |<p()\)|2)1+2/p — |>\|2 lu(N)p (M)’ (V)] < co.
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Thus, for a fixed §,0 < § < 1, by (4)

(5)
P (1= |p(N)[2)1+2/p g 1—|A]2 @ : o .
For A € D such that [p(A)| < 4, we have
1— AP 2 /
TPy ST pp Ve !

1 2 ,
= m(l — [A*)log 1—_|T‘2|U()\)<P (Ml

and so by (3)
(6)

2
— 2
sup{ -]

A R BT e
Consequently by (5) and (6), we have

1— A2 2
i 8 T )] < o

(NN A€ D, lp(A)] < 6} < oo

sup
xeD (1= [p(N)[2)1+2/p

We finish the proof. O

THEOREM 2.2. Let ¢ be an analytic selfmap of D and u be an
analytic function on the unit disk D and 1 < p < oo such that

(1 - ‘2‘2) 2 !
N U Teps BT
Suppose that uC, exists as a bounded operator from AP into By,g, then
uC, : AP — By,g is compact if and only if the following (i) and (ii) are
satisfied:

(i)

(2)] < o0.

o Ol
lo(2)l—1 (1 — |@(2)2)2/P 21— |2z

(ii)
m (1—z*) log 2
lo(z)l—1 (1 — |p(2)[?)1+2/p 21— |2

PRrOOF. Assume (i) and (ii) hold, in order to prove that uC, is
compact, it suffices to show that if { f,,} is a bounded sequence in AP that
converges to 0 uniformly on compact subsects of D, then || uC, fn {/i0g—
0. This criterion for compactness follows by standard arguments similar
to those outlined in proposition 3.11 of [2], for example. Let {f,} be

E |u(2)¢'(2)] = 0.
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a sequence in AP with ||fn|l < 1 and f, — 0 uniformly on compact
subsets of D. By the assumption, for any ¢ > 0, there is a constant
9,0 < § < 1, such that § < |¢(z)] < 1 implies

a-lef) . 2
(1= TP *1=Td

5 [v/(2)] < €/2

and 2
(112 2 ,
1 .
(0= o py s B T e (B < o2
Let K = {w € D : |w| < 6}. Note that K is a compact subsect of D,
then

I 4Cy i hog= sup(1 = 1) log 7= (uCi ) ()
zeD <
< sup(1— |2[2) log —— |/ () fu((2))]
z€D 1 ]Z!
+sup(1 = f*) log T () o (0(2)¢ (2)
< s (- )lor g () falel)

{z€D:p(z)€K}

2
+  sup (12 log ———slu(2)¢’ ()| f7.(p(2))] + €
{zeD:p(2)eK} 1- |Z|

< 1w lliog Sup [ fn(w)] + M sup (1 — [w|*)F2/P| fr,(w)] +,
weK weK

where

1—|z|? 9 ,
a -(Iw(z|)l2|)z+2/f’ log T plu(e)e ()l -2 € Dy

As n — o0, | uCyfn lliog— 0. Consequently, uC, : AP — Bjyg is
compact.

Conversely, suppose uC,, : AP — Bj,, is compact. Let {z,} be a
sequence in D such that |¢(z,)] — 1 as n — oco. Let

1—|p(zn)]? 2
fale) = (2
(1= ¢(zn)2)
Then f, € AP and || f,|| < 1 and f,, converges to 0 uniformly on compact

subsets of D. Since uC, is compact, we have || uCy, fp [liog— 0 as n — oo.
Thus

M = sup{

0 | uCpfn lliog
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> supep(1 - |2]?) log =2 (uCy ) (2)]

2 I (Ito Lg}?)z/p log Tzl (2n)|

_%<1—|;(:;||2>)1+% log T=Eplu(zn)e(za)¢! (20)|l.
So we get
(1= |z ") 2 !
(7) l‘P(zir)Illﬂl (1= lp(zn)2)?/P 8 L= lenf® —
lim 4 (1—|z/?) log [u(zn)@' (20)]
|‘p(zn)l—*1 P (1 — (2 [2)1+2/7 1 —|znl?
Next let
1—|p(=)® 1 2P,

(- pl)e) 1

for a sequence {2} in D such that |p(2,)] — 1, then gn(2z) is a bounded
sequence in AP and g,(z) — 0 uniformly on every compact subset of D,

gn(¥(z)) = 0 and

) 0(2n)
9(eln)) = T P

Then
0 — ” uC&pgn ”log

> sup(1 = [2f") Iog 7= (4G 2)
1-— 'Zn|2 2 /
oo e 08 T en) e (an) ¢/ (an)

Thus we can get

(1—z?) 2 ,
ikt (1 — |p(2)[2)1+2/p log T lu(2)¢'(2)] = 0,

and so by (7), we have

()2
lo(2)l—1 (1 — Jp(2)[2)¥P = 1~ |2]

2]u'(z)] =0.
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O
From the last two theorems, we can easily obtain the following two
theorems:

THEOREM 2.3. Let ¢ be an analytic self-map of D and 1 < p < o0.
Then C, : AP — By, is bounded if and only if the following is satisfied:

sup (1= |Z2‘23 575 10g 2 519 (2)| < co.
2D (1= lp(2))H2/P = 1 -2

THEOREM 2.4. Let ¢ be an analytic self-map of D and 1 < p < o0.
Suppose C, : AP — Bj,q is bounded, then C,, : AP — B,,, is compact if
and only if the following is satisfied:

1—2)? 2
(ST
e(@1-1 (1 — |p(2)2)HH2/7 21 — |2

z1¢' () =0.

References

1] K. R. M. Attele, Toeplitz and Hankel operators on Bergman space, Hokkaido
Math. J. 21(1992), 279-293.

[2] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic
Functions, CRC Press, Boca Raton, FL. 1995.

[3] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related
inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.

[4] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Grad.
Texts in Math. 1999, Springer, New York, Berlin, 2000.

[5] S. Ohno, Weighted composition operators between H>® and the Bloch space, Tai-
wanese J. Math. 5 (2001), 555-563.

[6] F. Perez-Gonzalez and J. Xiao, Bloch-Hardy pullbacks, Acta. Sci. Math.(Szeged),
67 (2001), 709-718.

[7] W. Smith, Composition operators between some classical spaces of analytic func-
tion, Proceedings of the International Conference on Function Theory, Seoul,
Korea, 2001, 32-46.

[8] R. Yoneda, The composition operators on weighted Bloch space, Arch. Math. 78
(2002), 310-317.

[9] R. Zhao, Composition operators from Bloch type spaces to Hardy and Besov
spaces, J. Math. Anal. Appl. 233 (1999), 749-766.

[10] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.

Department, of Mathematics

JiaYing University

514015 MeiZhou, GuangDong, China
E-mail: 1sx@mail.zjxu.edu.cn



