KYUNGPOOK Math. J. 61(2021), 889-896 https://doi.org/10.5666/KMJ.2021.61.4.889 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

A Class of Normaloid Weighted Composition Operators on the Fock Space over $\mathbb C$

CHANDRASEKARAN SANTHOSHKUMAR*

Corporate and Industry Relations, Amrita Vishwa Vidhyapeetham, Coimbatore, Tamil Nadu, India 641112 e-mail: santhosh_csk@yahoo.com

THIRUMALAISAMY VELUCHAMY Dr. SNS Rajalakshmi College of Arts and Science, Saravanampatti, Coimbatore, Tamil Nadu, India 641035 e-mail: veluchamy_t@yahoo.com

ABSTRACT. Let ϕ be an entire self map on \mathbb{C} and let ψ be an entire function on \mathbb{C} . A weighted composition operator induced by ϕ with weight ψ is given by $C_{\psi,\phi}$. In this paper we investigate under what conditions the weighted composition operators $C_{\psi,\phi}$ on the Fock space over \mathbb{C} induced by ϕ with weight of the form $k_c(\zeta) = e^{\langle \zeta, c \rangle - \frac{|c|^2}{2}}$ is normaloid and essentially normaloid.

1. Introduction

In this paper, we work with a class of weighted composition operators acting on the Fock space \mathcal{F}^2 , also known as the *Bargmann* space over the complex plane \mathbb{C} . This is the Hilbert space of analytical functions $f(\zeta)$ such that $\|f\|^2 = \frac{1}{\pi} \int_{\mathbb{C}} |f(\zeta)|^2 e^{-|\zeta|^2} dA(\zeta), \zeta \in \mathbb{C}$, where dA is the usual Lebesque measure on \mathbb{C} . In \mathcal{F}^2 , the inner product is defined as $\langle f, g \rangle = \frac{1}{\pi} \int_{\mathbb{C}} f(\zeta) \overline{g(\zeta)} e^{-|\zeta|^2} dA(\zeta)$. It is known that \mathcal{F}^2 is a reproducing kernel Hilbert space (RKHS) with kernel $K_{\eta}\zeta = e^{\langle \zeta, \eta \rangle}$ for $\eta, \zeta \in \mathbb{C}$. Let $k_{\eta} = \frac{K_{\eta}}{\|K_{\eta}\|}$ be the normalization of K_{η} .

A composition operator C_{ϕ} on \mathcal{F}^2 is defined as $C_{\phi}f = f \circ \phi$, where ϕ is an analytical self map on \mathbb{C} . For an analytical function ψ , the weighted composition operator on \mathcal{F}^2 is defined as $C_{\psi,\phi}f = \psi f \circ \phi$. It is clear that when $\psi \equiv 1$, $C_{\psi,\phi}$ is reduced to C_{ϕ} . The classical Fock space has been studied by many authors; see, for example [1], [6]

Received August 20, 2020; revised January 20, 2021; accepted February 8, 2021.

 $2020 \ \mathrm{Mathematics} \ \mathrm{Subject} \ \mathrm{Classification:} \ \ 30H20, \ 47B32, \ 47B33, \ 47B38$

Key words and phrases: Weighted Composition Operator, Fock Space, Normaloid, Essentially Normaloid, Spectraloid.

^{*} Corresponding Author.

and [11]. For more on background on composition operators, one recommend the excellent books [2] and [9]. The book [12] is an excellent reference on the Fock space.

For a bounded operator A, we denote

- $\sigma(A)$ the spectrum of A.
- $\sigma_e(A)$ the essential spectrum of A.
- $r_{\sigma}(A) = \sup\{|\lambda|, \lambda \in \sigma(A)\},$ the spectral radius of $\sigma(A)$.
- $r_{\sigma_e}(A)$ }, the essential spectral radius of $\sigma_e(A)$.
- W(A) the numerical range of A.
- $r_w(A) = \sup\{|\lambda|, \lambda \in W(A)\},$ the numerical radius of W(A).
- $||A||_e = \inf\{||A B|| : B \text{ is compact}\}, \text{ the essential norm.}$
- $r_{\sigma}(A) = \lim_{n \to \infty} (\|A^n\|)^{\frac{1}{n}}$
- $r_{\sigma_e}(A) = \lim_{n \to \infty} (\|A^n\|_e)^{\frac{1}{n}}$

Also we have the following definitions for an operator A

- Normaloid if $||A|| = r_{\sigma}(A)$
- Essentially Normaloid if $||A||_e = r_{\sigma_e}(A)$
- Spectraloid if $r_{\sigma}(A) = r_w(A)$

It is also well known that every hyponormal operator is normaloid and an operator is normaloid iff $||A^n|| = ||A||^n$ for every integer $n \ge 1$. By [[5], Theorem 1.3-2], if $r_w(A) = ||A||$, then $r_\sigma(A) = ||A||$. We will also use the fact that unitarily equivalent bounded operators have the same numerical range and norm.

In [10], the author gave an exact characterization for when weighted composition operators on the *classical Hardy space* \mathcal{H}^2 are normaloid. Inspired by the article [10], we will investigate under which conditions a class of weighted composition operators on the Fock space \mathcal{F}^2 is normaloid and under which it is essentially normaloid.

2. Preliminary Results

In this section, we list well-known results on weighted composition operators on \mathcal{F}^2 .

Theorem 2.1.([1], Theorem 1) Suppose $\phi : \mathbb{C} \to \mathbb{C}$ is an analytic function. (a) If C_{ϕ} is bounded on \mathfrak{F}^2 then $\phi(\zeta) = \mu\zeta + \nu$, where $\mu, \nu \in \mathbb{C}, |\mu| \leq 1$ and if $|\mu| = 1$ then $\nu = 0$.

(b) If C_{ϕ} is compact on \mathcal{F}^2 then $\phi(\zeta) = \mu \zeta + \nu$, where $|\mu| < 1$.

By ([1], Theorem 2), the converse of the above theorem is also true.

Theorem 2.2.([[6], Theorem 2.2]) Suppose ψ, ϕ be analytic functions on \mathbb{C} such that ψ is not identically zero. Then $C_{\psi,\phi}$ is bounded iff ψ belongs to \mathcal{F}^2 , $\phi(\zeta) = \phi(0) + \lambda \zeta$ with $|\lambda| \leq 1$ and $M(\psi, \phi) := \sup\{|\psi|^2 e^{(|\phi(\zeta)|^2 - |\zeta|^2)}; \zeta \in \mathbb{C}\} < \infty$.

Theorem 2.3.([[6], Theorem 2.3]) Let ψ, ϕ be entire functions such that ψ is not identically zero. Then the operator $C_{\psi,\phi}$ is a normal bounded operator on \mathcal{F}^2 iff one of the following two cases occurs:

a. $\phi(\zeta) = \lambda \zeta + \nu$ with $|\lambda| = 1$ and $\psi = \psi(0) K_{\overline{\lambda}\nu}$. In this case, $C_{\psi,\phi}$ is a constant multiple of a unitary operator.

b. $\phi(\zeta) = \lambda \zeta + \nu$ with $|\lambda| < 1$ and $\psi = \psi(0)K_c$, where $c = \nu \frac{1-\overline{\lambda}}{1-\lambda}$. In this case, $C_{\psi,\phi}$ is unitarily equivalent to $\psi(0)C_{\lambda\zeta}$.

Theorem 2.4.([[6], Theorem 2.4]) If ψ, ϕ be analytic functions on \mathbb{C} such that ψ is not identically zero. Then $C_{\psi,\phi}$ is compact on \mathcal{F}^2 if and only if $\phi(\zeta) = \mu \zeta + \nu$ with $|\mu| < 1$ and $\lim_{|\zeta| \to \infty} |\psi|^2 e^{|\phi(\zeta)|^2 - |\zeta|^2} = 0$.

In the following result, the author calculated norm of the composition operators acting on the Fock space over \mathbb{C}^n

Theorem 2.5.([[1], Theorem 4]) Suppose that ϕ is a self-map on \mathbb{C}^n such that $\phi(\zeta) = \Sigma \zeta + \Lambda$, where either $\|\Sigma\| < 1$ and Λ is arbitrary, or $\|\Sigma\| = 1$ and $\langle \Sigma \eta, \Lambda \rangle = 0$ whenever $|\Sigma \eta| = |\eta|$. Then on $\mathcal{F}^2(\mathbb{C}^n)$, we have $\|C_{\phi}\| = e^{\frac{1}{4}(|w_0|^2 - |\Sigma w_0|^2 + |\Lambda|^2)}$, where w_0 is any solution to $(I - \Sigma^* \Sigma) w = \Sigma^* \Lambda$.

In one variable setting, when ϕ is of the form $\phi(\zeta) = \mu\zeta + \nu$, the above result is reduced to $\|C_{\phi}\| = e^{\frac{1}{2}\frac{|\nu|^2}{1-|\mu|^2}}$ where $|\mu| < 1$. In [3], the author extended the norm calculation into *non-Hilbert Fock space* $\mathcal{F}^p(\mathbb{C}^n)$.

3. Main Results

In this section, we characterize a class of bounded normaloid weighted composition operators induced by the self map ϕ of the form $\phi(\zeta) = \mu\zeta + \nu$ where $\mu, \nu \in \mathbb{C}$ such that $|\mu| < 1$ and the weight function ψ of the form $\psi(\zeta) = k_c \zeta$ for some $c \in \mathbb{C}$. By Theorem 2.1, $|\mu| = 1$, implies $\nu = 0$. This implies $\phi(\zeta) = \mu\zeta$ which induces a normal weighted composition operator on \mathcal{F}^2 . Moreover every normal operator is normaloid. Therefore we consider the case $|\mu| < 1$. The following two lemmas are easy to derive.

Lemma 3.1. Let $\psi_1, \psi_2, ..., \psi_n$ be analytic functions on \mathbb{C} and $\phi_1, \phi_2, ..., \phi_n$ be an analytic self-map on \mathbb{C} . If $C_{\psi_1,\phi_1}, C_{\psi_2,\phi_2}, ..., C_{\psi_n,\phi_n}$, are bounded operators on \mathcal{F}^2 , then $C_{\psi_1,\phi_1}C_{\psi_2,\phi_2}..., C_{\psi_n,\phi_n} = C_{\psi_1(\psi_2\circ\phi_1)....(\psi_n\circ\phi_{n-1}\circ\ldots\circ\phi_1),\phi_n\circ\phi_{n-1}\circ\ldots\circ\phi_1}$.

Lemma 3.2. Let ψ, ϕ be holomorphic function on \mathbb{C} and $C_{\psi,\phi}$ is a bounded operator on \mathcal{F}^2 , then for $\zeta \in \mathbb{C}$, then $C^*_{\psi,\phi}K_{\zeta} = \overline{\psi(\zeta)}K_{\phi(\zeta)}$

In the following result we derive criterion for a composition operator on \mathcal{F}^2 to be normaloid.

Theorem 3.3. Suppose ϕ is a holomorphic on \mathbb{C} such that $\phi(\zeta) = \mu \zeta + \nu, |\mu| < 1$. Then C_{ϕ} is normaloid on \mathcal{F}^2 if and only if $\phi(0) = 0$.

Proof. First, assume that $\phi(0) = 0$. This implies $\phi(\zeta) = \mu \zeta$. Thus C_{ϕ} is an diagonal operator which is normal. Hence C_{ϕ} is normaloid on \mathcal{F}^2 .

For the other direction, suppose C_{ϕ} is normaloid. (i.e) $r_{\sigma}(C_{\phi}) = ||C_{\phi}||$. By ([1], Theorem 4), we have $||C_{\phi}|| = e^{\frac{1}{2}\frac{|\nu|^2}{(1-|\mu|^2)}}$.

In ([4], Proposition 3.3), it is given that $\sigma(C_{\phi}) = \overline{\{\mu^n; n \in \mathbb{Z}_+\}}$ for $|\mu| < 1$. This gives $r_{\sigma}(C_{\phi}) = 1$. Therefore, we have $e^{\frac{1}{2}\frac{|\nu|^2}{(1-|\mu|^2)}} = 1$. This implies $\nu = 0$. Therefore $\phi(0) = 0$.

Next, we find the criterion for the composition operator on the Fock space to be essessially normaloid.

Theorem 3.4. Let ϕ be a holomorphic function on \mathbb{C} such that $\phi(\zeta) = \mu \zeta + \nu$ with $|\mu| \leq 1$. Then C_{ϕ} is essentially normaloid.

Proof. Consider the case $|\mu| = 1$, then by ([1], Theorem 1), we have $\nu = 0$. Therefore $\phi(\zeta) = \mu\zeta$. By ([8], Theorem 2.2), we have $||C_{\phi}||_e = ||C_{\phi}|| = 1$. In this case, we have $C_{\phi}^k = C_{\phi^k} = C_{\mu^k\zeta}$ with $|\mu^k| = 1$. This implies $||C_{\phi^k}||_e = ||C_{\phi^k}||_e = 1$. Therefore $r_{\sigma_e}(C_{\phi}) = \lim_{k \to \infty} ||C_{\phi}^k||_e^{\frac{1}{k}} = 1$. Hence C_{ϕ} is essentially normaloid.

On the other hand, if $|\mu| \neq 1$, then $|\mu| < 1$. This implies C_{ϕ} is compact ([1], Theorem 2). This implies $\|C_{\phi}\|_e = 0$. Moreover, $C_{\phi}^k = C_{\phi^k} = C_{\mu^k \zeta + \nu(\mu^{k-1} + \mu^{k-2} + ... + 1)}$. Since $|\mu^k| < 1$, we have C_{ϕ^k} is compact. Therefore $\|C_{\phi}^k\|_e = 0$. Thus $r_{\sigma_e}(C_{\phi}) = \lim_{k \to \infty} \|C_{\phi}^k\|_e^{\frac{1}{k}} = 0$. Hence C_{ϕ} is essentially normaloid.

In the next theorem, we will derive conditions by which the weighted composition operator on the Fock space \mathcal{F}^2 induced by the symbol ϕ and the weight function of the form $\psi(\zeta) = k_c(\zeta)$ for some $c \in \mathbb{C}$.

For $p \in \mathbb{C}$, denote $\phi_p(\zeta) = \zeta - p$, $\Phi_p(\zeta) = \phi_p \circ \phi \circ \phi_{-p}$ and $\Psi_p(\zeta) = k_{-p}(\psi \circ \phi_{-p})(k_p \circ \phi \circ \phi_{-p})$.

Lemma 3.5.([11], Proportion 2.3) For $p \in \mathbb{C}$, $\phi_p(\zeta) = \zeta - p$, C_{k_p,ϕ_p} is unitary.

Theorem 3.6. Let ϕ be an analytic function on \mathbb{C} such that $\phi(\zeta) = \mu\zeta + \nu$ with $|\mu| < 1$ and $\phi(p) = p$ for some $p \in \mathbb{C}$ and $\psi(\zeta) = k_c(\zeta)$ for $c \in \mathbb{C}$. Then the bounded weighted composition operator $C_{\psi,\phi}$ is normaloid.

Proof. Consider

(3.1)
$$C_{k_{-p},\phi_{-p}}C_{\psi,\phi}C_{k_{p},\phi_{p}} = C_{k_{-p}.(\psi\circ\phi_{-p}).(k_{p}\circ\phi\circ\phi_{-p}),\phi_{p}\circ\phi\circ\phi_{-p}}$$
$$= C_{\Psi_{p},\Phi_{p}}$$

Hence $C_{\psi,\phi}$ and C_{Ψ_p,Φ_p} are unitarily equivalent operators on the Fock space \mathcal{F}^2 .

Since $\phi(p) = p$, we have

(3.2)

$$\Phi_{p}(\zeta) = \phi_{p} \circ \phi \circ \phi_{-p}(\zeta)$$

$$= \phi_{p}(\phi(\phi_{-p}))(\zeta)$$

$$= \phi_{p}(\phi(\zeta + p))$$

$$= \phi_{p}(\mu(\zeta + p) + \nu)$$

$$= \mu\zeta + \mu p + \nu - p$$

$$= \mu\zeta + \phi(p) - p$$

$$= \mu\zeta$$

and

(3.3)
$$\Psi_p(\zeta) = k_{-p}(\psi \circ \phi_{-p})(k_p \circ \phi \circ \phi_{-p})(\zeta)$$
$$= k_{-p}(\zeta)(\psi(\phi_{-p}(\zeta))(k_p(\phi(\phi_{-p}(\zeta))))$$
$$= e^{-\zeta \overline{p}}\psi(\zeta + p)k_p(\phi(\zeta + p))$$
$$= e^{-\zeta \overline{p} - \frac{|p|^2}{2}}e^{(\zeta + p)\overline{c} - \frac{|c|^2}{2}}e^{(\mu(\zeta + p) + \nu)\overline{p} - \frac{|p|^2}{2}}$$
$$= e^{-\zeta \overline{p} + (\zeta + p)\overline{c} - \frac{|c|^2}{2} + (\mu(\zeta + p) + \nu)\overline{p} - |p|^2}$$

From $C^*_{\Psi_p,\Phi_p}K_0 = \overline{\Psi_p(0)}K_0$, we have $||(C_{\Psi_p,\Psi_p} - \Psi_p(0))K_0|| = ||(C_{\Psi_p,\Psi_p} - \Psi_p(0))^*K_0|| = 0$. Since $K_0 = 1$, we get $(C_{\Psi_p,\Phi_p} - \Psi_p(0))K_0 = 0$. This implies $\Psi_p(\zeta) = \Psi_p(0)$.

Thus from (1.3), we have $\Psi_p(\zeta) = \Psi_p(0) = e^{p\overline{c} - \frac{|c|^2}{2} + |p|^2(\mu-1) + \nu\overline{p}}$ which is a constant. Denote $s = e^{p\overline{c} - \frac{|c|^2}{2} + |p|^2(\mu-1) + \nu\overline{p}}$.

Therefore, $C_{\Psi_p,\Phi_p} = sC_{\mu\zeta}$ with $|\mu| < 1$

In ([7], Proposition 2.2), author derived the numerical range of composition operator $C_{\mu\zeta}$ where $|\mu| < 1$ acting on Hardy space \mathcal{H}^2 is a closed polygonal region, whose vertices form a finite subset $\{\mu^n | n \ge 1\}$. It is clear from the proof that this result is also true for the Fock space \mathcal{F}^2 .

It follows from ([7], Proposition 2.2), the numerical range of $C_{\Psi_p,\Phi_p} = sC_{\mu\zeta}$ is $\overline{\{s\mu^n | n \ge 0\}}$.

Thus $r_w(C_{\Psi_p,\Phi_p}) = |s|.$

On the other hand, by ([1], Theorem 4), $||C_{\Psi_p,\Phi_p}|| = ||sC_{\mu\zeta}|| = |s|$

Thus $r_w(C_{\Psi_p,\Phi_p}) = \|C_{\Psi_p,\Phi_p}\|$. By [[5], Theorem 1.3-2], C_{Ψ_p,Φ_p} is normaloid. Using the fact that unitarily equivalent bounded operators have same numerical range and norm, we get the desired result.

Theorem 3.7. Let ϕ be an analytic function on \mathbb{C} such that $\phi(\zeta) = \mu\zeta + \nu$ with $|\mu| < 1$ and $\phi(p) = p$ for some $p \in \mathbb{C}$ and $\psi(\zeta) = k_c(\zeta)$ for $c \in \mathbb{C}$. Then the bounded weighted composition operator $C_{\psi,\phi}$ is essentially normaloid.

Proof. Since $|\mu| < 1$, by ([6], Theorem 2.4), $C_{\psi,\phi}$ is compact. This implies $||C_{\psi,\phi}||_e = 0$. On the other hand, we know that $C_{\psi,\phi}$ is unitarily equivalent to C_{Ψ_p,Φ_p} , where $\Psi_p(\zeta) = \Psi_p(0)$, which is a constant. Since $|\mu| < 1$, $C_{\Psi_p,\Psi_p} = \Psi_p(0).C_{\mu\zeta}$ is compact. Therefore $||C_{\Psi_p,\Phi_p}||_e = 0$. Since unitarily equivalent operators have same essential spectrum, we have $r_{\sigma_e}(C_{\psi,\phi}) = r_{\sigma_e}(C_{\Psi_p,\Phi_p})$. Also $||C_{\Psi_p,\Phi_p}^k||_e = ||\Psi_p(0)^k.C_{\Psi_p}^k||_e = 0$. Thus $r_{\sigma_e}(C_{\psi,\phi}) = 0$. Hence $C_{\psi,\phi}$ is essentially normaloid.

Corollary 3.8. Let ϕ be an analytic self map on \mathbb{C} such that $\phi(\zeta) = \mu \zeta + \nu$ with $|\mu| < 1$ and $\psi(\zeta) = k_c(\zeta)$. Then C_{ϕ} is normaloid implies $C_{\psi,\phi}$ is essentially normaloid.

Proof. By Theorem 3.3, we have $\nu = 0$. This implies $C_{\psi,\phi} = C_{\psi,\mu\zeta}$. By ([6], Theorem 2.4), $C_{\psi,\mu\zeta}$ is a compact operator on the Fock space \mathcal{F}^2 . Therefore $\|C_{\psi,\mu\zeta}\|_e = 0$. On the other hand, by Lemma 3.1, we have $C_{\psi,\mu\zeta}^k = C_{\psi(\zeta).(\psi(\mu\zeta)).(\psi(\mu^2\zeta))...(\psi(\mu^k\zeta)),\mu^k\zeta}$ with $|\mu| < 1$ and $|\mu^k| < 1$ implies $C_{\psi,\mu\zeta}^k$ is compact.

Thus $r_{\sigma_e}(C_{\psi,\phi}) = \lim_{k\to\infty} (\|C_{\psi,\mu\zeta}^k\|_e)^{\frac{1}{k}} = 0$. Hence $C_{\psi,\phi}$ is essentially normaloid.

Theorem 3.9. Let ψ be a holomorphic function on \mathbb{C} and ϕ be a analytic self map on \mathbb{C} such that $\phi(\zeta) = \mu \zeta + \nu$ with $|\mu| < 1$. If $C_{\psi,\phi}$ be a bounded operator on the Fock space \mathcal{F}^2 such that C_{ϕ} is normaloid then $C_{\psi,\phi}$ is normaloid.

Proof. By Theorem 3.3, we have $\phi(0) = 0$. This implies $\phi(\zeta) = \mu\zeta$. From Lemma 3.2, $C_{\psi,\phi}^* K_0 = \overline{\psi(0)} K_{\phi(0)} = \overline{\psi(0)} K_0$ and $\|(C_{\psi,\phi} - \psi(0)) K_0\| = \|(C_{\psi,\phi} - \psi(0))^* K_0\|$, we have $(C_{\psi,\phi} - \psi(0)) K_0 = 0$. Since $K_0 = 1$, we have $\psi(\zeta) = \psi(0)$, which is a constant and denote $\psi(0) = u$. Thus $C_{\psi,\phi} = u C_{\mu\zeta}$ with $|\mu| < 1$.

Following arguments as in Theorem 3.6, we get $||C_{\psi,\phi}|| = ||uC_{\mu\zeta}|| = |u|$ and $r_{\sigma}(C_{\psi,\phi}) = r_{\sigma}(uC_{\mu\zeta}) = |u|$. Hence $C_{\psi,\phi}$ is normaloid.

Theorem 3.10. Let ϕ be an analytical function on \mathbb{C} such that $\phi(\zeta) = \mu \zeta + \nu$ with $|\mu| < 1$ and $\psi(\zeta) = k_c(\zeta)$. Suppose $\phi(p) = p$ then $C_{\psi,\phi}$ is normaloid if and only if $C_{\psi,\phi}$ is spectraloid.

894

Proof. It is known that every normaloid is spectraloid. On the other hand, assume that $C_{\psi,\phi}$ is spectraloid. by definition, $r_{\sigma}(C_{\psi,\phi}) = r_w(C_{\psi,\phi})$. Since $C_{\psi,\phi}$ is unitarily equivalent to C_{Ψ_p,Φ_p} where Ψ_p, Φ_p defined as in Theorem 3.6., by ([7], Proposition 11) and using the fact that unitarily equivalent operators have same numerical range, we get $r_w(C_{\psi,\phi}) = |\Psi_p(0)|$. Also from the proof of Theorem 3.6, we have $\Psi_p(\zeta) = \Psi_p(0)$, a constant. By ([1], Theorem 4), we have $||C_{\psi,\phi}|| = ||C_{\Psi_p,\Phi_p}|| = ||\Psi_p(0)|$. Thus $r_w(C_{\psi,\phi}) = ||C_{\psi,\phi}||$. Hence $C_{\psi,\phi}$ is normaloid.

In the next theorem, we will find the conditions for which the $C^2_{\psi,\phi}$ is normaloid. Moreover, this result can be extended to any power of natural number. In order to prove the next result we need following proposition.

Proposition 3.11. Let ϕ be holomorphic on \mathbb{C} such that $\phi(\zeta) = \mu\zeta + \nu$ with $|\mu| < 1$ and $\psi(\zeta) = k_c(\zeta)$. Then $C^2_{\psi,\phi}$ is unitarily equivalent to $C_{\Psi'_p,\Phi'_p}$, where $\Phi'_p(\zeta) = \mu^2 \zeta + \mu^2 p + \mu\nu + \nu - p$ and $\Psi'_p(\zeta) = e^{\zeta(\overline{c}(\mu+1)+\overline{p}(\mu^2-1))+\overline{c}(\mu p+\nu+p)-|c|^2}$

Proof. By ([11], Proposition 2.2), C_{k_p,ϕ_p} is unitary and its inverse is $C_{k_{-p},\phi_{-p}}$. Taking $\Psi'_p(\zeta) = k_{-p}(\zeta).\psi \circ \phi_{-p}(\zeta).\psi \circ \phi \circ \phi_{-p}(\zeta).k_p \circ \phi \circ \phi \circ \phi_{-p}(\zeta)$ and $\Phi'_p(\zeta) = \phi_p \circ \phi \circ \phi \circ \phi_{-p}(\zeta)$, and with the fact that reproducing kernels are dense in the Fock space \mathcal{F}^2 , we have

(3.4)
$$C_{k_{-p},\phi_{-p}}C_{\psi,\phi}C_{\psi,\phi}C_{k_{p},\phi_{p}}K_{w}(\zeta) = C_{\Psi'_{p},\Phi'_{p}}K_{w}(\zeta)$$

This implies $C_{\psi,\phi}$ is unitarily equivalent to $C_{\Psi'_p,\Phi'_p}$ where $\Phi'_p(\zeta) = \mu^2 \zeta + \mu^2 p + \mu \nu + \nu - p$ and $\Psi'_p(\zeta) = e^{\zeta(\overline{c}(\mu+1)+\overline{p}(\mu^2-1))+\overline{c}(\mu p+\nu+p)-|c|^2}$.

Theorem 3.12. Let ϕ be an analytical function on \mathbb{C} such that $\phi(\zeta) = \mu \zeta + \nu$ with $|\mu| < 1$ and $\psi(\zeta) = k_c(\zeta)$. For some $p \in \mathbb{C}$, if $\phi^2(p) = p$ then $C^2_{\psi,\phi}$ is normaloid.

Proof. By Proposition 3.11, we have $C_{\psi,\phi}$ is unitarily equivaent to $C_{\Psi'_p,\Phi'_p}$. Taking $\phi^2(p) = p$ for some $p \in \mathbb{C}$, we get

(3.5)

$$\Phi'_{p}(\zeta) = \phi_{p} \circ \phi \circ \phi \circ \phi_{-p}(\zeta)$$

$$= \phi_{p}(\phi^{2}(\zeta + p))$$

$$= \phi_{p}(\mu^{2}\zeta + \mu^{2}p + \mu\nu + \nu)$$

$$= \mu^{2}\zeta + \mu^{2}p + \mu\nu + \nu - p$$

$$= \mu^{2}\zeta + \phi^{2}(p) - p$$

$$= \mu^{2}\zeta$$

(3.6)
$$\Psi'_{p}(\zeta) = k_{-p}(\zeta).\psi \circ \phi_{-p}(\zeta).\psi \circ \phi \circ \phi_{-p}(\zeta).k_{p} \circ \phi \circ \phi \circ \phi_{-p}(\zeta)$$
$$= e^{\zeta(\overline{c}(\mu+1)+\overline{p}(\mu^{2}-1))+\overline{c}(\mu p+\nu+p)-|c|^{2}}$$

From $C^*_{\Psi'_{p},\Phi'_{p}}K_{0} = \overline{\Psi'_{p}(0)}K_{\Phi'_{p}(0)}$ and $||(C_{\Psi'_{p},\Phi'_{p}} - \Psi'_{p}(0))K_{0}|| = ||(C_{\Psi'_{p},\Phi'_{p}} - \Psi'_{p}(0))^{*}K_{0}||$, we have $(C_{\Psi'_{p},\Phi'_{p}} - \Psi'_{p})K_{0} = C_{\Psi'_{p},\Phi'_{p}}K_{0} - \Psi'_{p}K_{0} = 0$. Therefore $\Psi'_{p}(\zeta) = \Psi'_{p}(0)$ which is a constant. Denote $\Psi'_{p}(\zeta) = \Psi'_{p}(0) = s$. Thus $C_{\psi,\phi}$ is unitarily equivalent to $sC_{\Phi'_{p}}$ where $\Phi'_{p}(\zeta) = \mu^{2}\zeta$ with $|\mu| < 1$.

By ([7], Proposition 2.2) and following argument as in Theorem 3.6., we have $r_w(C_{\Psi'_p,\Phi'_p} = |s| \text{ and by ([1], Theorem 4), we get } ||C_{\Psi'_p,\Phi'_p}|| = |s|$. Thus $C_{\Psi'_p,\Phi'_p}$ is normaloid. Since norm and numerical range of unitarily equivalent operators are equal, we get the desire result.

Corollary 3.13. Let ϕ be an analytical function on \mathbb{C} such that $\phi(\zeta) = \mu \zeta + \nu$ with $|\mu| < 1$ and $\psi(\zeta) = k_c(\zeta)$. For some $wwwp \in \mathbb{C}$ and any natural number n, if $\phi^n(p) = p$ then $C^n_{\psi,\phi}$ is normaloid.

Proof. Result can be proved by following similar argument as in Theorem 3.12. \Box

References

- B. J. Carswell, B. D. MacCluer and A. Schuster, Composition Operators on the Fock Space, Acta. Sci. Math. (Szeged)., (69)(2003), 871–887.
- [2] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytical Functions, Studies in Advanced Mathematics, CRC Press.
- [3] J. Dai, The Norm of Composition Operators on the Fock Space, Complex Variables and Elliptic Equations, (64)(9)(2019), 1–9.
- [4] K. Guo and K. Izuchi, Composition Opertors on Fock Type Spaces, Acta Sci. Math.(Szeged)., (74)(3-4)(2008), 807–828.
- [5] K. E. Gustafson and K. M. Rao, Numerical Range, Springer-Verlag New York, 1997.
- T. Le, Normal and Isometric Weighted Composition Operators on the Fock Space, Bull. Lond. Math. Soc., (46)(4)(2014), 847–856.
- [7] V. Matache, Numerical Range of Composition Operators, Linear. Algebra. Appl., (331)(2001), 61–74.
- [8] T. Mengestie and W. Seyoum, Spectra of Composition Operators on Fock-type Spaces, Questiones Mathematicae, (2019), 1–16.
- [9] J. H. Shapiro, Composition Operators and Classical Tunction Theory, Universitext: Tracts in Mathematics, Springer - Verlag, New York, 1993.
- [10] D. Thompson, Normaloid Weighted Composition Operators on H², J. Math. Anal. Appl., (467)(2)(2018), 1153–1162.
- [11] L. Zhao, Unitary Weighted Composition Operator on the Fock Space of Cⁿ, Complex. Anal. Oper. Theory., (8)(2)(2014), 581–590.
- [12] K. Zhu, Analysis on Fock Spaces, Graduate Text in Mathematics, Springer, New York.