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DISJOINT SUPERCYCLIC WEIGHTED COMPOSITION

OPERATORS

Yu-Xia Liang and Ze-Hua Zhou

Abstract. In this paper, we discovered a sufficient condition ensuring

the weighted composition operators Cw1,ϕ1 , . . . , CwN ,ϕN were disjoint
supercyclic on H(Ω) endowed with the compact open topology. Besides,

we provided a condition on inducing symbols to guarantee the disjoint

supercyclicity of non-constant adjoint multipliers M∗
ϕ1

,M∗
ϕ2

, . . . ,M∗
ϕN

on a Hilbert space H.

1. Introduction

As usual, N is the set of all non-negative integers and given an integer N ∈ N,
we always assume that N ≥ 2. Let H(Ω) denote the space of holomorphic
functions on a simply connected domain Ω of the complex plane, endowed with
the compact open topology. If K is a compact subset of Ω, for f ∈ H(Ω),
define

PK(f) = sup
z∈K
|f(z)|.

Then {PK : K ⊂ Ω, K is compact} is a family of seminorms that make H(Ω)
a locally convex space. Indeed, this topology is the topology of uniform con-
vergence on compact subsets of the simply connected domain Ω. In this way,
H(Ω) turns into a Fréchet space. Moreover, by Runge’s theorem ([12, p. 359]),
H(Ω) is separable, see [12, Exercise 4.3.1]. Given a holomorphic self-map
ϕ of Ω, we can define the composition operator Cϕ : H(Ω) → H(Ω) with
Cϕ(f) = f ◦ ϕ. Given ψ ∈ H(Ω), then it can induce a pointwise multiplication
operator Mψ(f) = ψ ·f for all f ∈ H(Ω). Combining the composition operator
Cϕ and the multiplication operator Mψ, we define the weighted composition
operator Cψ,ϕf(z) = ψ(z)f(ϕ(z)) for f ∈ H(Ω).
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For an integer n ∈ N and a Fréchet space X, we let L(X) denote all bounded
linear operators on X, and then the n-th iterate of T ∈ L(X), denoted by Tn, is
obtained by composing T with itself n times. In general case, given N analytic

self-maps ϕ1, . . . , ϕN , the n-th iterate of ϕi, is denoted by ϕ
[n]
i for i = 1, . . . , N ;

also, let ϕ0 stand for the identity function. Besides, if ϕi is invertible, we can

define the n-th iterate ϕ
[−n]
i for i = 1, . . . N. Moreover, it’s easy to check that

Cnw,ϕ(f) =

n−1∏
j=0

w ◦ ϕ[j](f ◦ ϕ[n]) for all f ∈ H(Ω) and n ≥ 1.

We recall an operator T ∈ L(X) is hypercyclic if there is an x ∈ X such that
the orbit

Orb(T, x) = {Tnx : n = 0, 1, 2, . . .}
is dense in X, such a vector x is said to be hypercyclic for T. Roughly speak-
ing, hypercyclicity means existence of a dense orbit. It’s well known that
an operator T on a separable Banach space X is hypercyclic if and only if
it is topologically transitive in the sense of dynamical systems, i.e., for ev-
ery pair of non-empty open subsets U and V of X there is n ∈ N so that
Tn(U)

⋂
V 6= ∅. Hypercyclic operators have received considerable attention

recently, especially since they arise in familiar classes of operators, such as,
weighted shifts [11, 13, 14, 17–19, 24], composition operators [21, 27] and so on.
The first example of hypercyclic operator was given by Rolewicz in [23]. The
result is B is a backward shift on the Banach space `p(N), then λB is hyper-
cyclic for any complex number |λ| > 1. So the concept of supercyclic operators
arises. For T ∈ L(X), T is said to be supercyclic provided that there is some
x ∈ X such that the projective orbit

C ·Orb(T, x) = {λTnx : λ ∈ C, n = 0, 1, 2, . . .}

is dense in X and x is a supercyclic vector for T ∈ L(X). For motivation,
examples and background about linear dynamics, we refer the interested readers
to the two excellent books [1] by Bayart and Matheron, [12] by Grosse-Erdmann
and Manguillot.

In 2007, Bès and Peris and, independently, Beral investigated the property
of the orbits

{(x, , . . . , x), (T1x, T2x, . . . , TNx), (T 2
1 x, T

2
2 x, . . . , T

2
Nx), . . .} (x ∈ X)

on XN for N ≥ 2. They studied the condition under which one of these orbits
was dense in XN endowed with the product topology for some x ∈ X. If
there is some vector satisfying the above condition, the operators T1, . . . , TN
are called disjoint hypercyclic, i.e., the existence of a common vector with a
dense orbit for several operators, such that the approximation of any fixed
vectors is also simultaneously performed by using a common subsequence. The
interested readers can refer into [2, 4, 7, 8, 20–22] and their references therein
for more information about the disjoint hypercyclicity. At the same time,
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the disjoint supercyclicity also emerges and becomes an active topic in linear
dynamics. Observing the following definition, the disjoint supercyclicity is a
natural generalization of supercyclicity of a single operator. Here we cite the
definitions in relation with the disjoint supercyclicity of T1, T2, . . . , TN ∈ L(X).

Definition 1.1. Recall that N ≥ 2 operators T1, T2, . . . , TN ∈ L(X) are dis-
joint supercyclic or d-supercyclic if the direct sum T1 ⊕ T2 ⊕ · · · ⊕ TN has a
supercyclic vector of the form (x, x, . . . , x) ∈ XN endowed with the product
topology.

Definition 1.2. We say the operators T1, T2, . . . , TN ∈ L(X) are d-topologically
transitive for supercyclicity provided for every non-empty open subsets V0, V1,
. . . , VN of X, there exist n ∈ N and λ ∈ C such that

V0
⋂

(λT−n1 )(V1)
⋂
· · ·
⋂

(λT−nN )(VN ) 6= ∅.

We apply [8, Proposition 2.3] to the sequences (λT j1 )λ∈C, j∈N, . . . , (λT
j
N )λ∈C, j∈N

to show that the d-topologically transitive for supercyclicity can imply d-
supercyclicity.

Proposition 1.3. Given N ≥ 2 and the operators T1, T2, . . . , TN ∈ L(X),
they are d-topologically transitive for supercyclicity if and only if the set of
d-supercyclic vectors for T1, T2, . . . , TN is a dense Gδ set.

This paper was organized as below, the d-supercyclicity of Cw1,ϕ1
, . . . , CwN ,ϕN

on H(Ω) was discussed in Section 2 and a sufficient condition for the d-super-
cyclicity of adjoint multipliers on a Hilbert space H was investigated in Section
3.

2. The weighted composition operators

In this section, we found a characterization for the disjointness of compact
sets to ensure the d-supercyclicity of Cw1,ϕ1 , . . . , CwN ,ϕN on H(Ω), which is
closely related with some known facts, such as [4, Corollary 2.2] and [16, Corol-
lary 2.6].

As we all know that if ϕ is a univalent holomorphic self-map of the unit
disk D, then the composition operator Cϕ is hypercyclic if and only if ϕ has
no fixed point in D. Hereafter, some research on the dynamics of weighted
composition operators started. There are various papers concerning the hy-
percyclicity and weakly-supercyclicity of weighted composition operators, see,
e.g. [3, 15, 25, 26] and the reference therein. Especially, the paper [5] showed a
complete characterization of disjoint supercyclic tuples of linear fractional com-
position operators and furthermore the d-mixing property of tuples of operators
is deeply studied in [6], including weighted composition operators on spaces of
p-integrable functions. Very recently the paper [16] dealt with the disjoint hy-
percyclicity and weakly d-supercyclicity of weighted composition operators on
H(D) and a Hilbert space H. Inspired by the above interesting results, we turn
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our attention to the disjoint supercyclicity of weighted composition operators
on H(Ω) and adjoint multipliers on a Hilbert space H. On the one hand, if the
operators T1, T2, . . . , TN are d-supercyclic, then each of them must be super-
cyclic. On the other hand, an operator that is supercyclic must necessarily be
weakly supercyclic. Hence we firstly cite a proposition which severely limits the
kinds of maps that can produce supercyclic weighted composition operators.

Proposition 2.1 ([3, Proposition 2.1]). Suppose Cw,ϕ : H(Ω) → H(Ω) is
weakly supercyclic, where Ω is an arbitrary plane domain. Then

(i) the weight symbol w is zero-free, and
(ii) the compositional symbol ϕ is univalent and without fixed points.

Hereafter, we always assume that all composition symbols and all weights
satisfy the assumptions in Proposition 2.1.

Theorem 2.2. Let N ≥ 2 and Cw1,ϕ1 , . . . , CwN ,ϕN be supercyclic weighted
composition operators on H(Ω). If for each compact set K ⊂ Ω, there exist

n ≥ 1 and λ ∈ C\{0} so that the sets λK, λϕ
[n]
1 (K), . . . , λϕ

[n]
N (K) are pairwise

disjoint, then the weighted composition operators Cw1,ϕ1
, . . . , CwN ,ϕN are d-

supercyclic on H(Ω).

Proof. We will show that Cw1,ϕ1 , . . . , CwN ,ϕN are d-topologically transitive for
supercyclicity (Definition 1.2). Denote V0, V1, . . . , VN the non-empty open sub-
sets of H(Ω). We want to find n ∈ N and λ ∈ C \ {0} satisfying

(2.1) V0
⋂(

λC [−n]
w1,ϕ1

(V1)
)⋂(

λC [−n]
w2,ϕ2

)
(V2)

⋂
· · ·
⋂(

λC [−n]
wN ,ϕN

)
(VN ) 6= ∅.

For a given ε > 0, there exist compact subsets K0, . . . ,KN of Ω and functions
f0, . . . , fN ∈ H(Ω) such that the set

{h ∈ H(Ω) : sup
z∈Kj

|h(z)− fj(z)| < ε} ⊂ Vj for 0 ≤ j ≤ N.

Denote K =
⋃N
j=0Kj and then we conclude that

{h ∈ H(Ω) : sup
z∈K
|h(z)− fj(z)| < ε} ⊂ Vj for 0 ≤ j ≤ N.

Considering the compactness of K, we can find two simply connected closed
sets B1 ⊂ Ω and B2 ⊂ Ω satisfying K ⊂ B1 ⊂ B̊2. For the compact set
B2 and using the hypothesis, there exist n ∈ N and λ ∈ C \ {0} so that

λB2, λϕ
[n]
1 (B2), . . . , λϕ

[n]
N (B2) are pairwise disjoint. In particular, the sets

λB1, λϕ
[n]
1 (B1), . . . , λϕ

[n]
N (B1) are also pairwise disjoint and all composition

symbols are univalent, hence we can define the mapping

g
( z
λ

)
=


f0
(
z
λ

)
, z ∈ λB1,∏n

k=1
λ

wj◦ϕ[−k]
j ( zλ )

fj ◦ ϕ[−n]
j

(
z
λ

)
, z ∈ λϕ[n]

j (B1) for 1 ≤ j ≤ N.
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Since each of λB1 and λϕ
[n]
j (B1) (1 ≤ j ≤ N) is compact and simply connected,

hence the complement of λB1 ∪ λϕ[n]
1 (B1) ∪ · · · ∪ λϕ[n]

N (B1) is connected. Em-
ploying the Runge’s theorem (see, e.g. [12, Theorem A.24]), it turns out that
there exists a polynomial function p such that∣∣∣p( z

λ

)
− g

( z
λ

)∣∣∣ < min

{
ε,

λε

‖w1‖n∞
, . . . ,

λε

‖wN‖n∞

}
for all z ∈ B1 ∪ λϕ[n]

1 (B1) ∪ · · · ∪ λϕ[n]
N (B1). It’s trivial to check that∣∣∣f0 ( z

λ

)
− p

( z
λ

)∣∣∣ < ε

for all z ∈ λB1. That is to say that sup
u∈B1

|f0(u)− p(u)| < ε, which yields that

p ∈ {h ∈ H(Ω) : sup
z∈K
|h(z)− f0(z)| < ε} ⊆ V0.(2.2)

On the other hand, for all z ∈ λϕ[n]
j (B1), we derive that∣∣∣∣∣

n∏
k=1

λ

wj ◦ ϕ[−k]
j

(
z
λ

)fj ◦ ϕ[−n]
j

( z
λ

)
− p

( z
λ

)∣∣∣∣∣ < λε

‖wj‖n∞
for all 1 ≤ j ≤ N.

If v ∈ λB1, then λϕ
[n]
j

(
v
λ

)
∈ λϕ[n]

j (B1). Replacing z by λϕ
[n]
j

(
v
λ

)
, the above

inequality implies that for v ∈ λB1,∣∣∣∣∣∣
n∏
k=1

λ

wj ◦ ϕ[−k]
j

(
ϕ
[n]
j

(
v
λ

))fj ◦ ϕ[−n]
j ◦ ϕ[n]

j

( v
λ

)
− p ◦ ϕ[n]

j

( v
λ

)∣∣∣∣∣∣
=

∣∣∣∣∣
n−1∏
k=0

λ

wj ◦ ϕ[k]
j

(
v
λ

)fj ( v
λ

)
− p ◦ ϕ[n]

j

( v
λ

)∣∣∣∣∣ < λε

‖wj‖n∞
.

Furthermore, we obtain that∣∣∣∣∣fj ( vλ)−
∏n−1
k=0 wj ◦ ϕ

[k]
j

(
v
λ

)
λ

p ◦ ϕ[n]
j

( v
λ

)∣∣∣∣∣ < ε for v ∈ λB1.

That is to say that∣∣∣∣fj ( vλ)− 1

λ
C [n]
wj ,ϕjp

( v
λ

)∣∣∣∣ < ε for v ∈ λB1.

The above inequality can be formulated into∣∣∣∣fj (u)− 1

λ
C [n]
wj ,ϕjp (u)

∣∣∣∣ < ε for u ∈ B1.

Hence sup
u∈B1

∣∣∣fj (u)− 1
λC

[n]
wj ,ϕjp (u)

∣∣∣ < ε, from which we deduce that 1
λC

[n]
wj ,ϕjp ∈

Vj , 1 ≤ j ≤ N. By the linearity of Cwj ,ϕj , we induce that

p ∈ λC [−n]
wj ,ϕjVj , 1 ≤ j ≤ N.(2.3)
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Combining (2.2) with (2.3), there exist n ∈ N and λ ∈ C \ {0} fulfilling

p ∈ V0
⋂
λC [−n]

w1,ϕ1
(V1)

⋂
λC [−n]

w2,ϕ2
(V2)

⋂
· · ·
⋂
λC [−n]

wN ,ϕN (VN ).

That is, the weighted composition operators Cw1,ϕ1 , . . . , CwN ,ϕN are d-topolog-
ically transitive for supercyclicity. Due to Proposition 1.3, they are d-super-
cyclic on H(Ω). This ends the proof. �

Analyzing the proof for Theorem 2.2, there may be a typo in the statement
of [4, Corollary 2.2]. Hence we give a remark to account for it.

Remark 2.3. In [4, Corollary 2.2], (Cϕ1,n)∞n=1, . . . , (CϕN,n)∞n=1 are d-supercyclic
on H(Ω) if and only if for each compact set K ⊂ Ω, there exist n ≥ 1 and
λ ∈ C \ {0} so that the sets λK, λϕ1,n(K), . . . , λϕN,n(K) are pairwise disjoint
and each of ϕ1,n, . . . , ϕN,n is injective on K.

In view of Theorem 2.2, the following corollary holds for the case Ω = D,
which generalizes [16, Corollary 2.6] to some extent. For the attractive fixed
point (or Denjoy-Wolff point) for a self-map on D, the readers can refer to
[9, Theorem 2.51 and Definition 2.52] for more information.

Corollary 2.4. Suppose Cw1,ϕ1 , . . . , CwN ,ϕN are supercyclic weighted compo-
sition operators with univalent self-maps ϕ1, . . . , ϕN having no interior fixed
points. If the attractive fixed points (or Denjoy-Wolff points) of ϕ1, . . . , ϕN are
all distinct, then Cw1,ϕ1

, . . . , CwN ,ϕN are d-supercyclic on H(D).

Proof. We will prove the sets λK, λϕ
[n]
1 (K), . . . , λϕ

[n]
N (K) are pairwise disjoint

for each compact set K ⊂ D, n ∈ N large enough and λ = 1 ∈ C \ {0}.
Denote the attractive fixed point (or Denjoy-Wolff point) of ϕj by αj /∈ D
for 1 ≤ j ≤ N. For each ξ ∈ K ⊂ D, by [9, Theorem 2.51], it yields that

ϕ
[n]
j (ξ) → αj , n → ∞, for 1 ≤ j ≤ N. Due to the compactness of the set K,

there exist a compact set K̄j 3 αj and lj ∈ N such that ϕ
[n]
j (K) ⊂ K̄j for

n > lj (1 ≤ j ≤ N). Since αi 6= αj for i 6= j and K ⊂ D, we can further make
the sets K̄1, . . . , K̄N small enough and l1, l2, . . . , lN large enough such that
K̄i ∩ K̄j = ∅ for i 6= j and K ∩ K̄j = ∅ for 1 ≤ j ≤ N. In the end, we choose

K̄1, . . . , K̄N small enough and l1, l2, . . . , lN large enough so that ϕ
[n]
j (K) ⊂ K̄j

for n > lj(1 ≤ j ≤ N), K̄i ∩ K̄j = ∅ for i 6= j and K ∩ K̄j = ∅ for 1 ≤ j ≤ N.
As a consequence, there exist n0 ∈ N satisfying n0 > max{l1, . . . , lN} and

λ0 = 1 ∈ C\{0} so that the sets K, ϕ
[n0]
1 (K), . . . , ϕ

[n0]
N (K) are pairwise disjoint

for each compact set K ⊂ D. Hence the d-supercyclicity of Cw1,ϕ1
, . . . , CwN ,ϕN

follows from Theorem 2.2. This ends the proof. �

3. Adjoint multipliers on a Hilbert space

In this section, let H be an infinite dimensional separable Hilbert space of
analytic functions defined on D such that for each z ∈ D, the linear functional
of point evaluation at z given by f → f(z) is bounded. In what follows, a
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Hilbert space of analytic functions H we mean one satisfies the above conditions.
Moreover, the constants and the identity function f(z) = z are in the Hilbert
space H. The Riesz representation theorem states that eλ(f) = 〈f, kλ〉 for
some kλ ∈ H, the reproducing kernel of H. The weighted Hardy space is the
well-known example of such Hilbert space H. Let (β(n))n be a sequence of
positive numbers with β(0) = 1. The weighted Hardy space H2(β) is the space

of analytic functions f =
∑∞
n=0 f̂(n)zn on D satisfying

‖f‖2β =

∞∑
n=0

|f̂(n)|2|β(n)|2 <∞.

From the book [9] we know that the classical Hardy space, the Bergman space
and the Dirichlet space are weighted Hardy spaces with β(n) = 1, β(n) =
(n+ 1)−1/2 and β(n) = (n+ 1)1/2, respectively.

Recall that a multiplier ofH is an analytic function ψ on D such that ψ(H) ⊂
H. We collect all multipliers of H and denote by M(H). Given ψ ∈ M(H),
define the multiplication operator Mψ by Mψf = ψf , bounded on H. It’s
well-known that every multiplier is a bounded holomorphic function on D. In
the first step, we describe a necessary condition for the d-supercyclicity of two
adjoint multipliers M∗ψ1

and M∗ψ2
on H.

Proposition 3.1. Let ψ1, ψ2 be non-constant multipliers of H. If M∗ψ1
and

M∗ψ2
are d-supercyclic operators, then ψ1/ψ2 must be non-constant.

Proof. We assume that ψ2 = µψ1 for some µ ∈ C. Denote f 6= 0 a d-supercyclic
vector for M∗ψ1

and M∗µψ1
. For two different vectors (f, 0) ∈ H×H and (0, f) ∈

H × H, we can respectively find the sequences {λnk}k ⊂ C and {λ̂mk}k ⊂ C
satisfying

(λnkM
∗nk
ψ1

f, λnkM
∗nk
µψ1

f)→ (f, 0) and

(λ̂mkM
∗mk
ψ1

f, λ̂mkM
∗mk
µψ1

f)→ (0, f)

as k →∞. Due to M∗nµψ1
= µ̄nM∗nψ1

for all n ∈ N. Therefore, the above formulas
entails that

(λnkM
∗nk
ψ1

f, µ̄nkλnkM
∗nk
ψ1

f)→ (f, 0) and

(λ̂mkM
∗mk
ψ1

f, µ̄mk λ̂mkM
∗mk
ψ1

f)→ (0, f)

as k → ∞. The first one verifies that |µ| < 1 and the second one yields that
|µ| > 1, which is a contradiction. This ends the proof. �

The d-Supercyclicity Criterion is a sufficient condition for d-supercyclicity,
which is one of main tools to seek for the d-supercyclic operators. We cite the
following version for our further consequences.

Definition 3.2 (d-Supercyclicity Criterion, [4, Definition 4.1.1]). Let X be a
Banach space and {nk}k be a strictly increasing sequence of positive integers.
We say that T1, . . . , TN in L(X) satisfy the d-Supercyclicity Criterion with
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respect to {nk}k provided there exist dense subsets X0, X1, . . . , XN of X and
mappings

Sl : Xl → X, (1 ≤ l ≤ N)

so that for 1 ≤ i ≤ N
(i) (Tnkl Snki − δi,lIXi) →

k→∞
0 pointwise on Xi,

(ii) lim
k→∞

‖Tnkl x‖ ·

∥∥∥∥∥ N∑
j=1

Snkj yj

∥∥∥∥∥ = 0 for x ∈ X0 and yj ∈ Xj .

Now we concentrate on the disjoint supercyclicity of M∗ψ1
and M∗ψ2

on H.

Theorem 3.3. Let ψ1 and ψ2 be non-constant multipliers of H and suppose
M∗ψ1

and M∗ψ2
are both supercyclic on H. If the following sets

V0 = {z ∈ D : |ψ1(z)| < 1, |ψ2(z)| < 1},(3.1)

V1 = {z ∈ D : |ψ1(z)| > 1, |ψ1(z)| > |ψ2(z)|},(3.2)

V2 = {z ∈ D : |ψ2(z)| > 1, |ψ2(z)| > |ψ1(z)|}(3.3)

are non-empty, then M∗ψ1
and M∗ψ2

are d-supercyclic on H.

Proof. From the assumptions we can verify that the sets SV0
= span{kz : z ∈

V0}, SV1 = span{kz : z ∈ V1} and SV2 = span{kz : z ∈ V2} are dense in
H, that is, SV0 = SV1 = SV2 = H. We include the details for the readers’
convenience. In fact, if f ∈ H is orthogonal to kz for every z ∈ V0 and
f(z) = 〈f, kz〉. Since the set V0 defined in (3.1) is nonempty, then the set V0
has a limit point in D, hence the identity theorem for holomorphic functions
implies that f vanishes identically on H. Thus (SV0)⊥ = {0}. That is, SV0 = H.
By the similar argument and employing (3.2) and (3.3), we can formulate that
SV1 = H and SV2 = H.

Since M∗nψi kz = ψi(z)
n
kz for i = 1, 2. For z ∈ V0, employing the fact

|ψi(z)| < 1 for i = 1, 2, and the linearity of M∗ψi , we conclude that

‖M∗nψi ‖ → 0, pointwise on SV0 as n→∞(3.4)

for i = 1, 2.
To find the desired right inverse of M∗ψi for i = 1, 2, we divide the proof into

two cases by the fact that the set GV1
= {kz : z ∈ V1} is linearly independent

or not.
(Case i) Suppose the set GV1 = {kz : z ∈ V1} is linearly independent. In

this case, we define a linear map S1 : SV1 → H by

S1kz = ψ1(z)
−1
kz, z ∈ V1.

Since |ψ1(z)| > 1 for all z ∈ V1, then S1 is well-defined and we can extend
S1 by linearity on SV1

= span{kz, z ∈ V1}. Furthermore, we can get that

Sn1 kz = ψ1(z)
−n
kz, z ∈ V1 for all n ≥ 1. Due to |ψ1(z)| > 1, it is clear that

Sn1 kz → 0 as n→∞.(3.5)
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From the definitions, M∗ψ1
S1kz = kz and M∗nψ2

Sn1 kz = ψ2(z)
n
ψ1(z)

−n
kz → 0 as

n→∞ due to |ψ2(z)| < |ψ1(z)| for all z ∈ V1.
(Case ii) Now we assume that the set GV1

= {kz : z ∈ V1} is not linearly
independent. In this case, we use the method which has been used by Godefroy
and Shapiro in [10, Theorem 4.5]. For the convenience of the readers, we exhibit
this proof in details. Consider a countable dense subset

V11 = {wn ∈ D : n ≥ 1}
of the set V1. Next we will use induction to choose a sequence zn. Take z1 = w1,
denote

V12 = V11 \ {w ∈ V11 : kw ∈ span{kz1}}.
Denote the first element of V12 by z2 and let

V13 = V12 \ {w ∈ V12 : kw ∈ span{kz1 , kz2}}.
The infinite dimensionality of H insures the process never terminates. Then
we can obtain an infinite subset L1 = {zn ∈ D : n ≥ 1} of the set V1, for
which the corresponding set of kernel functions GL1

= {kz : z ∈ L1} is linearly
independent and is dense in H. Now the operator S1 can be defined exactly as
above, just with GL1

in place of GV1
. To sum up, we can define the map S1

under the above two cases. The same process can be done for GV2 = {kz, z ∈
V2} to obtain the map S2 : SV2 → H, where GV2 is linearly independent or not.

From the definitions, M∗ψiSikz = kz for all z ∈ Vi and i = 1, 2. On the one

hand, for z ∈ V1, then M∗nψ2
Sn1 kz = ψ2(z)

n
ψ1(z)

−n
kz → 0 as n → ∞. On the

other hand, for z ∈ V2, it also holds that

M∗nψ1
Sn2 kz = ψ1(z)

n
ψ2(z)

−n
kz → 0 as n→∞.

The above formulas reflect that (i) M∗nψl S
n
i − δi,lISVi →n→∞ 0 pointwise on SVi .

At the same time, the displays (3.4), (3.5) and the definition for S2 : SV2
→ H

lead that

lim
n→∞

‖M∗nψl ky‖‖S
n
1 kz1 + Sn2 kz2‖

≤ lim
n→∞

‖ψl(y)
n
ky‖‖ψ1(z1)

−n
kz1 + ψ2(z2)

−n
kz2‖ = 0

for ky ∈ SV0
, kz1 ∈ SV1

and kz2 ∈ SV2
. That is, (ii) of Definition 3.2 is also

true. As a consequence, the operators M∗ψ1
,M∗ψ2

satisfy the d-Supercyclicity
Criterion, thus they are d-supercyclic on H. The proof is complete. �

Adapted from the proof of Theorem 3.3, the sufficient condition ensuring
the d-supercyclicity of N ≥ 2 multipliers M∗ψ1

,M∗ψ2
, . . . ,M∗ψN on H follows.

Corollary 3.4. Let ψ1, ψ2, . . . , ψN be non-constant multipliers of H and sup-
pose M∗ψ1

,M∗ψ2
, . . . ,M∗ψN are supercyclic. If the following sets V0 = {z ∈ D :

|ψi(z)| < 1, i = 1, 2, . . . , N} and for i = 1, 2, . . . , N,

Vi = {z ∈ D : |ψi(z)| > 1, max{|ψ1(z)|, . . . , |ψi−1(z)|, |ψi+1(z)|, . . . , |ψN (z)|}
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< |ψi(z)|}

are non-empty, then M∗ψ1
,M∗ψ2

, . . . ,M∗ψN are d-supercyclic on H.

Example 1. Let ψ1(z) = z + 1 and ψ2(z) = z − 1
2 . Then

ψ1

(
−1

3

)
=

2

3
and ψ2

(
−1

3

)
= −5

6
,(3.6)

ψ1

(
1

3

)
=

4

3
and ψ2

(
1

3

)
= −1

6
,(3.7)

ψ1

(
−2

3

)
=

1

3
and ψ2

(
−2

3

)
= −7

6
.(3.8)

From (3.6)-(3.8), it reads that −1/3 ∈ V0, 1/3 ∈ V1 and −2/3 ∈ V2. Em-
ploying Theorem 3.3, it yields that M∗z+1 and M∗

z− 1
2

are d-supercyclic on H.
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