• Title/Summary/Keyword: Wafer level MEMS packaging

Search Result 30, Processing Time 0.029 seconds

Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging (Au-Sn 공정 접합을 이용한 RF MEMS 소자의 Hermetic 웨이퍼 레벨 패키징)

  • Wang Qian;Kim Woonbae;Choa Sung-Hoon;Jung Kyudong;Hwang Junsik;Lee Moonchul;Moon Changyoul;Song Insang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.197-205
    • /
    • 2005
  • Development of the packaging is one of the critical issues for commercialization of the RF-MEMS devices. RF MEMS package should be designed to have small size, hermetic protection, good RF performance and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at the temperature below $300{\times}C$ is used. Au-Sn multilayer metallization with a square loop of $70{\mu}m$ in width is performed. The electrical feed-through is achieved by the vertical through-hole via filled with electroplated Cu. The size of the MEMS Package is $1mm\times1mm\times700{\mu}m$. By applying $O_2$ plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface as well as via hole. The shear strength and hermeticity of the package satisfy the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  • PDF

Design and Strength Evaluation of an Anodically Bonded Pressurized Cavity Array for Wafer-Level MEMS Packaging (기판단위 밀봉 패키징을 위한 내압 동공열의 설계 및 강도 평가)

  • Gang, Tae-Gu;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.11-15
    • /
    • 2001
  • We present the design and strength evaluation of an anodically bonded pressurized cavity array, based on the energy release rate measured from the anodically bonded plates of two dissimilar materials. From a theoretical analysis, a simple fracture mechanics model of the pressurized cavity array has been developed. The energy release rate (ERR) of the bonded cavity with an infinite bonding length has been derived in terms of cavity pressure, cavity size, bonding length, plate size and material properties. The ERR with a finite bonding length has been evaluated from the finite element analysis performed for varying cavity and plate sizes. It is found that, for an inter-cavity bonding length greater than the half of the cavity length, the bonding strength of cavity array approaches to that of the infinite plate. For a shorter bonding length, however, the bonding strength of the cavity array is monotonically decreased with the ratio of the bonding length to the cavity length. The critical ERR of 6.21J/㎡ has been measured from anodically bonded silicon-glass plates. A set of critical pressure curves has been generated for varying cavity array sizes, and a design method of the pressurized cavity array has been developed for the failure-free wafer-level packaging of MEMS devices.

THe Novel Silicon MEMS Package for MMICS (초고추파 집적 회로를 위한 새로운 실리콘 MEMS 패키지)

  • Gwon, Yeong-Su;Lee, Hae-Yeong;Park, Jae-Yeong;Kim, Seong-A
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.271-277
    • /
    • 2002
  • In this paper, a MEMS silicon package is newly designed, fabricated for HMIC, and characterized for microwave and millimeter-wave device applications. The proposed package is fabricated by using two high resistivity silicon substrates and surface/bulk micromachining technology. It has a good performance characteristic such as -20㏈ of $S_11$/ and -0.3㏈ of $S_21$ up to 20㎓, which is useful in microwave region. It has also better heat transfer characteristics than the commonly used ceramic package. Since the proposed silicon MEMS package is easy to fabricate and wafer level chip scale packaging is also possible, the production cost can be much lower than the ceramic package. Since it will be a promising low-cost package for mobile/wireless applications.

A Study on Wafer Level Vacuum Packaging using Epi poly for MEMS Applications (Epi poly를 이용한 MEMS 소자용 웨이퍼 단위의 진공 패키징에 대한 연구)

  • 석선호;이병렬;전국진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • A new vacuum packaging process in wafer level is developed for the surface micromachining devices using glass silicon anodic bonding technology. The inside pressure of the packaged device was measured indirectly by the quality factor of the mechanical resonator. The measured Q factor was about 5$\times10^4$ and the estimated inner pressure was about 1 mTorr. And it is also possible to change the inside pressure of the packaged devices from 2 Torr to 1 mTorr by varying the amount of the Ti gettering material. The long-term stability test is still on the way, but in initial characterization, the yield is about 80% and the vacuum degradation with time was not observed.

  • PDF

Wafer Level Package Using Glass Cap and Wafer with Groove-Shaped Via (유리 기판과 패인 홈 모양의 홀을 갖는 웨이퍼를 이용한 웨이퍼 레벨 패키지)

  • Lee, Joo-Ho;Park, Hae-Seok;Shin, Jea-Sik;Kwon, Jong-Oh;Shin, Kwang-Jae;Song, In-Sang;Lee, Sang-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2217-2220
    • /
    • 2007
  • In this paper, we propose a new wafer level package (WLP) for the RF MEMS applications. The Film Bulk Acoustic Resonator (FBAR) are fabricated and hermetically packaged in a new wafer level packaging process. With the use of Au-Sn eutectic bonding method, we bonded glass cap and FBAR device wafer which has groove-shaped via formed in the backside. The device wafer includes a electrical bonding pad and groove-shaped via for connecting to the external bonding pad on the device wafer backside and a peripheral pad placed around the perimeter of the device for bonding the glass wafer and device wafer. The glass cap prevents the device from being exposed and ensures excellent mechanical and environmental protection. The frequency characteristics show that the change of bandwidth and frequency shift before and after bonding is less than 0.5 MHz. Two packaged devices, Tx and Rx filters, are attached to a printed circuit board, wire bonded, and encapsulated in plastic to form the duplexer. We have designed and built a low-cost, high performance, duplexer based on the FBARs and presented the results of performance and reliability test.

Wafer-Level Package of RF MEMS Switch using Au/Sn Eutectic Bonding and Glass Dry Etch (금/주석 공융점 접합과 유리 기판의 건식 식각을 이용한 고주파 MEMS 스위치의 기판 단위 실장)

  • Kang, Sung-Chan;Jang, Yeon-Su;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • A low loss radio frequency(RF) micro electro mechanical systems(MEMS) switch driven by a low actuation voltage was designed for the development of a new RF MEMS switch. The RF MEMS switch should be encapsulated. The glass cap and fabricated RF MEMS switch were assembled by the Au/Sn eutectic bonding principle for wafer-level packaging. The through-vias on the glass substrate was made by the glass dry etching and Au electroplating process. The packaged RF MEMS switch had an actuation voltage of 12.5 V, an insertion loss below 0.25 dB, a return loss above 16.6 dB, and an isolation value above 41.4 dB at 6 GHz.

Effects of Package Induced Stress on MEMS Device and Its Improvements (패키징으로 인한 응력이 MEMS 소자에 미치는 영향 분석 및 개선)

  • Choa Sung-Hoon;Cho Yong Chul;Lee Moon Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.165-172
    • /
    • 2005
  • In MEMS (Micro-Electro-Mechanical System), packaging induced stress or stress induced structure deformation becomes increasing concerns since it directly affects the performance of the device. In the decoupled vibratory MEMS gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, packaged using the anodic bonding at the wafer level and EMC (epoxy molding compound) molding, has a deformation of MEMS structure caused by thermal expansion mismatch. This effect results in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) process technology. It uses a silicon wafer and two glass wafers to minimize the wafer warpage. Thus the warpage of the wafer is greatly reduced and the frequency difference is more uniformly distributed. In addition. in order to increase robustness of the structure against deformation caused by EMC molding, a 'crab-leg' type spring is replaced with a semi-folded spring. The results show that the frequency shift is greatly reduced after applying the semi-folded spring. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique (3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징)

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jong Cheol;Na, Ye Eun;Kim, Tae Hyun;Noh, Kil Son;Sim, Gap Seop;Kim, Ki Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

Reliability Assessment of MEMS Gyroscope Sensor (MEMS 자이로스코프 센서의 신뢰성 문제)

  • Choi, Min-Seog;Choa, Sung-Hoon;Kim, Jong-Seok;Jeong, Hee-Moon;Song, In-Seob;Cho, Yong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1297-1305
    • /
    • 2004
  • Reliability of MEMS devices is receiving more attention as they are heading towards commercial production. In particular are the reliability and long-term stability of wafer level vacuum packaged MEMS gyroscope sensors subjected to cyclic mechanical stresses at high frequencies. In this study, we carried out several reliability tests such as environmental storage, fatigue, shock, and vibration, and we investigated the failure mechanisms of the anodically bonded vacuum gyroscope sensors. It was found that successful vacuum packaging could be achieved through reducing outgassing inside the cavity by deposition of titanium as well as by pre-taking process. The current gyroscope structure is found to be safe from fatigue failure for 1000 hours of operation test. The gyroscope sensor survives the drop and vibration tests without any damage, indicating robustness of the sensor. The reliability test results presented in this study demonstrate that MEMS gyroscope sensor is very close to commercialization.

Design and Fabrication of a Low-cost Wafer-level Packaging for RF Devices

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Hyun-Jin;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.91-95
    • /
    • 2014
  • This paper presents the structure and process technology of simple and low-cost wafer-level packaging (WLP) for thin film radio frequency (RF) devices. Low-cost practical micromachining processes were proposed as an alternative to high-cost processes, such as silicon deep reactive ion etching (DRIE) or electro-plating, in order to reduce the fabrication cost. Gold (Au)/Tin (Sn) alloy was utilized as the solder material for bonding and hermetic sealing. The small size fabricated WLP of $1.04{\times}1.04{\times}0.4mm^3$ had an average shear strength of 10.425 $kg/mm^2$, and the leakage rate of all chips was lower than $1.2{\times}10^{-5}$ atm.cc/sec. These results met Military Standards 883F (MIL-STD-883F). As the newly proposed WLP structure is simple, and its process technology is inexpensive, the fabricated WLP is a good candidate for thin film type RF devices.