DOI QR코드

DOI QR Code

Design and Fabrication of a Low-cost Wafer-level Packaging for RF Devices

  • Lim, Jae-Hwan (Department of Information and Communication Engineering, Pukyong National University) ;
  • Ryu, Jee-Youl (Department of Information and Communication Engineering, Pukyong National University) ;
  • Choi, Hyun-Jin (MEMS/NANO Fabrication Center) ;
  • Choi, Woo-Chang (MEMS/NANO Fabrication Center)
  • Received : 2014.02.10
  • Accepted : 2014.02.27
  • Published : 2014.04.25

Abstract

This paper presents the structure and process technology of simple and low-cost wafer-level packaging (WLP) for thin film radio frequency (RF) devices. Low-cost practical micromachining processes were proposed as an alternative to high-cost processes, such as silicon deep reactive ion etching (DRIE) or electro-plating, in order to reduce the fabrication cost. Gold (Au)/Tin (Sn) alloy was utilized as the solder material for bonding and hermetic sealing. The small size fabricated WLP of $1.04{\times}1.04{\times}0.4mm^3$ had an average shear strength of 10.425 $kg/mm^2$, and the leakage rate of all chips was lower than $1.2{\times}10^{-5}$ atm.cc/sec. These results met Military Standards 883F (MIL-STD-883F). As the newly proposed WLP structure is simple, and its process technology is inexpensive, the fabricated WLP is a good candidate for thin film type RF devices.

Keywords

References

  1. J. Baborowskia, A. Pezousa, G. S. Durantea, R. J. Jamesb, R. Ziltenerc, C. Mullera, and M. A. Duboisa, Procedia Chem. 1, 1535 (2009) [DOI: http://dx.doi.org/10.1016/j.proche.2009.07.383].
  2. C. W. Lin, C. P. Hsu, H. A. Yang, W. C. Wang, and W. Fang, J. Micromech. Microeng. 18, 1 (2008) [DOI: http://dx.doi.org/10.1088/0960-1317/18/2/025018].
  3. M. Esashi, J. Micromech. Microeng. 18, 1 (2008) [DOI: http://dx.doi.org/10.1088/0960-1317/18/7/073001].
  4. C. H. Lin, J. M. Lu, and W. Fang, J. Micromech. Microeng. 15, 1433 (2005) [DOI: http://dx.doi.org/10.1088/0960-1317/15/8/008].
  5. R. Chanchani, C. D. Nordquist, R. H. Olsson, T. Peterson, R. Shul, C. Ahlers, T. A. Plut, and G. A. Patrizi, IEEE Int. Electron. Compon. Technol. Conf., 1604 (2011) [DOI: http://dx.doi.org/10.1109/ECTC.2011.5898725].
  6. S. Tanaka, S. Matsuzaki, M. Mohri, A. Okada, H. Fukushi, and M. Esashi, IEEE Int. MEMS Conf., 376 (2011) [DOI: http://dx.doi.org/10.1109/MEMSYS.2011.5734440].
  7. J. Liu, Q. A. Huang, J. Shang, J. Song, and J. Tang, IEEE Int. MEMS Conf., 469 (2010) [DOI: http://dx.doi.org/10.1109/MEMSYS.2010.5442456].
  8. S. Jung, M. Lee, and J. Moon, IEEE Int. Electron. Compon. Technol. Conf., 1996 (2010) [DOI: http://dx.doi.org/10.1109/ECTC.2010.5490672].
  9. H. Son, K. Paik, and C. Chung, IEEE Trans. Electron. Packag. Manuf. 30, 221 (2007) [DOI: http://dx.doi.org/10.1109/ECTC.2006.1645705].
  10. C. W. Lin, H. A. Yang, W. C. Wang, and W. Fang, J. Micromech. Microeng. 17, 1200 (2007) [DOI: http://dx.doi.org/10.1088/0960-1317/17/6/014].
  11. G. Murillo, Z. J. Davis, S. Keller, G. Abadal, J. Agusti, A. Cagliani, N. Noeth, A. Boisen, and N. Barniol, Microelectron. Eng. 87, 1173 (2010) [DOI: http://dx.doi.org/10.1016/j.mee.2009.12.048].
  12. Yole Inc., Status of MEMS Industry, 141 (2009) [Online, http://www.i-micronews.com/upload/Rapports/Yole_Status_of_MEMS_Industry_flyer.pdf].
  13. Q. C. Zhao, Z. C. Yang, Z. Y. Guo, H. T. Ding, M. Li, and G. Z. Yan, J. Micro/Nanolitho. MEMS MOEMS 10, 1 (2011) [DOI: http://dx.doi.org/10.1117/1.3565459].
  14. W. Choi and H. Choi, IEEE Trans. Compon. Packag. Manuf. Tech. 2, 1442 (2012) [DOI: http://dx.doi.org/10.1109/TCPMT.2012.2205928].
  15. J. W. Yoona, H. S. Chuna, and S. B. Jung, J. Mater. Res. 22, 1219 (2007) [DOI: http://dx.doi.org/10.1557/jmr.2007.0145].