• Title/Summary/Keyword: Ultrasound cavitation

Search Result 49, Processing Time 0.025 seconds

The Effect of Liquid Height on Sonochemical Reactions in 74 kHz Sonoreactors (74 kHz 초음파 반응기에서 수위 변화에 따른 초음파 화학 반응의 변화)

  • Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2016
  • Acoustic cavitation can induce various sonochemical effects including pyrolysis and radical reactions and sonophysical effects including microjets and shockwave. In environmental engineering field, ultrasound technology using sonochemical effects can be useful for the removal and mineralization of recalcitrant trace pollutants in aqueous phase as one of emerging advanced oxidation processes (AOPs). In this study, the effect of liquid height, the distance from the transducer to the water surface, on sonochemical oxidation reactions was investigated using KI dosimetry. As the liquid height/volume increased (40~400 mm), the cavitation yield steadily increased even though the power density drastically decreased. It was found that the enhancement at higher liquid height conditions was due to the formation of standing wave field, where cavitation events could stably occur and a large amount of oxidizing radicals such as OH radicals could be continuously provided.

Analysis of the Ultrasonic Cavitation Energy in a Large-Scale Sonoreactor (Lrge-Scale 초음파 반응기에서의 내부 초음파 에너지 분포 분석)

  • Son, Younggyu;Lim, Myunghee;Kim, Wonjang;Khim, Jeehyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.129-134
    • /
    • 2008
  • Ultrasonic cavitational energy distributions were measured in a large-scale sonoreator. In application of 110 and 170 kHz of ultrasound, the cavitational energy was just detected near the transducer module. However 35 and 72 kHz ultrasound made good distributions from the module to the end of the sonoreactor, Especially, 72 kHz ultrasound application showed most stable and highest cavitational energy value through the whole length. In the comparison between input power and cavitational energy, linear relationships were obtained in 35 and 72 kHz and it was anticipated that these results would be used for the optimization of input power for the design of sonoreactors. And three dimensional energy distribution was depicted through the mapping of cavitaional energy. Average energy in the large-scale sonoreactor was estimated as 62.8 W, which was about 40 % of input power.

Development of a Piezoelectric Ultrasonic Tooth-whitening Apparatus

  • Lee, Young-Jin;Paik, Jong-Hoo;Lee, Jeong-Bae;Choi, Seung-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.268-272
    • /
    • 2013
  • The aim of this study was to develop an ultrasonic tooth-whitening apparatus using piezoelectric transducers, which enhance bleaching efficiency by applying ultrasound, while performing a teeth whitening procedure. For this purpose, an ultrasonic transducer was designed and manufactured, and the effects of reduction in the whitening material's concentration and in the whitening treatment time through using the ultrasound cavitation phenomenon were confirmed. Also, the validity of this study was investigated by comparing the whitening performance with a commercialized optical whitener, through color comparison. The results revealed that the ultrasound whitener produced color values that were enhanced by as much as double that of the conventional LED light whitening method. Even when the operational time was reduced by half, the ultrasound method showed superior performance by over 54% compared to the conventional light whitener, revealing that the ultrasound method showed a remarkable treatment reduction effect.

Effect of Ultrasound on the Decomposition of Sodium Dodecylbenzene Sulfonate in Aqueous Solution (Sodium Dodecylbenzene Sulfonate 수용액의 분해반응에서 초음파 효과)

  • Yim, Bong-Been
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.561-567
    • /
    • 2004
  • The influence of ultrasound frequency, dissolved gases, and initial concentration on the decomposition of sodium dodecylbenzene sulfonate(DBS) aqueous solution was investigated using ultrasound generator with 200 W ultrasound power. The decomposition rates at three frequencies(50, 200, and 600 kHz) examined under argon atmosphere were highest at 200 kHz. The highest observed decomposition rate at 200 kHz occurred in the presence of oxygen followed by air and argon, helium, and nitrogen. The effect of initial concentration of DBS on the ultrasonic decomposition was decreased with increasing initial concentration and would depend upon the formation of micelle in aqueous solution. It appears that the ultrasound frequency, dissolved gases, and initial concentration play an important role on the sonolysis of DBS. Sonolysis of DBS mainly take place at the interfacial region of cavitation bubbles by both OH radical attack and pyrolysis to alkyl chain, aromatic ring, and headgroup.

Current status of research on microbial disinfection of food using ultrasound (초음파를 활용한 식품 살균 기술의 연구 현황)

  • Song, Kyung-Mo
    • Food Science and Industry
    • /
    • v.53 no.3
    • /
    • pp.277-283
    • /
    • 2020
  • Microbial disinfection is essential to increase the preservation and safety of food. In general, thermal sterilization technology is most frequently used, but it often causes nutrient denaturation, and deterioration of food quality. Accordingly, non-thermal sterilization using a novel technology is emerging as an alternative technology. Among them, ultrasonic technology produces a disinfection effect by promoting the destruction of microorganisms by cavitation. Ultrasound technology alone has a low effect, so research is being actively conducted to develop an effective technology by applying as a hurdle technology with various other technologies. Ultrasound can be treated with various processes including traditional sterilization methods such as heating, high pressure, and chemical treatment, as well as novel technologies such as ultraviolet irradiation. Ultrasound assisted sterilization technology still remains at the laboratory level, requiring additional research such as the development of equipment for industrial application and establishment of an optimal process.

수중에 존재하는 TCE의 분해를 위한 초음파의 적용에 관한 연구

  • 김승현;임명희;김지형
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.184-187
    • /
    • 2003
  • The preliminary data from the application of the ultrasound to the degradation of TCE were shown. The first order degradation coefficients were are 0.0134 s$^{-1}$ and 0.0151s $^{-1}$ with saturating gas of air and argon, respectively. The pH of the solution went down to 3 and stabilized in each case.

  • PDF

Recent clinical trials with ultrasound induced blood-brain barrier opening (초음파 기반 혈뇌장벽 개방에 관한 최신 임상시험 연구 현황)

  • Park, Juyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.564-569
    • /
    • 2022
  • Blood-Brain Barrier (BBB) is the brain protecting system blocking the inflow of harmful substances into brain parenchyma from brain blood vessel. However, the BBB has a negative effect on the treatment of various brain diseases such as Alzheimer's dementia or brain tumors because it also prevents drug delivery into brain parenchyma. To overcome this problem, a brain drug delivery technique using Focused Ultrasound (FUS) which allows BBB to be temporarily opened by inducing the acoustic cavitation effect of microbubbles has been developed. Thus far, various studies using the FUS technique has been conducted to improve drug delivery efficiency, and therefore, this paper discusses recently developed drug delivery technologies using the FUS-induced BBB opening.

Enhancement of Transdermal Drug Delivery Using Ultrasound (초음파를 이용한 경피약물수송의 촉진)

  • Park, Seung-Kyu;Kim, Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.719-726
    • /
    • 2001
  • Transdermal drug delivery offers various advantages over conventional drug delivery systems, such as avoidance gastrointestinal degradation and hepatic first-pass effect. encourages patient compliance. and possible sustained release of drugs. However, transdermal transport of drugs is low permeability of the stratum corneum, the superficial layer of the skin. Many physicochemical and biological factors influencing transdermal transport is described together with the corresponding experimental and clinical results. Phonophoresis is medical treatment with drugs introduced into the skin by ultrasound energy. Enhanced drug penetration is through to result from the biophysical alterations of skin structure by ultrasound waves. The frequency used for phonophoresis is usually from 20 kHz to 15MHz. Phonophoresis can be categorized in to three ranges: low-frequency range(below 1 MHz). therapeutic frequency range(1 to 3MHz), and high-frequency range(above 3 MHz). The depth of penetration of ultrasound into skin is inversely proportional to the frequency. Cavitation may cause mechanical stress. temperature elevation, or enhanced chemical reactivity causing drug transport. One theory is that ultrasound affects the permeation of the stratum corneum lipid structure as the limiting step in permeating through the skin. The range of indications for phonophoresis is wide. Aspecific classification of the range of indications is obtained by classification of pathological conditions. The continuous research is needed for many interesting issucs of phonophoretic transdermal delivory in new future.

  • PDF

Ultrasonic Cavitation Effect Observation Using Bubble Cloud Image Analysis (기포군 영상분석을 통한 초음파 캐비테이션 현상의 변화 관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Kim, Jin-Su;Kang, Jung-Hoon;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.124-130
    • /
    • 2011
  • In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.

Investigation for Optimization of Ultrasonic Soil-Washing Process for Remediation of Diesel Contaminated Soil (유류오염토양의 복원을 위한 초음파 토양세척 공정의 최적화에 대한 연구)

  • Park, Beom-Guk;Son, Young-Gyu;Hwang, An-Na;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.101-105
    • /
    • 2011
  • Determination of ultrasonic frequency and experimental design approach to optimization of ultrasonic soil-washing process for remediation of diesel contaminated soil were investigated. Ultrasonic frequencies of 35, 72, and 100 kHz were used for determination of optimal frequency. $MINITAB^{(R)}$ program was used for experimental design of optimal washing condition. The optimal ultrasonic frequency was 35 kHz. Even though the number of cavitation bubble is little, however cavitation bubbles involving larger energy compared with high frequency was generated. Therefore, the removal efficiency at low frequency was higher than at high frequency. However the input energy has to be considered when the process is applied. The statistical tests from a factorial experiment shows that the application of ultrasound and mechanical mixing are the most important factor for design of an ultrasonic soil washing process. The lab-scale experiments are required to get the optimal condition of ultrasound and mechanical mixing for application of ultrasonic soil washing process.