Browse > Article
http://dx.doi.org/10.5012/jkcs.2004.48.6.561

Effect of Ultrasound on the Decomposition of Sodium Dodecylbenzene Sulfonate in Aqueous Solution  

Yim, Bong-Been (R&D Center, Envors Co., Ltd.)
Publication Information
Abstract
The influence of ultrasound frequency, dissolved gases, and initial concentration on the decomposition of sodium dodecylbenzene sulfonate(DBS) aqueous solution was investigated using ultrasound generator with 200 W ultrasound power. The decomposition rates at three frequencies(50, 200, and 600 kHz) examined under argon atmosphere were highest at 200 kHz. The highest observed decomposition rate at 200 kHz occurred in the presence of oxygen followed by air and argon, helium, and nitrogen. The effect of initial concentration of DBS on the ultrasonic decomposition was decreased with increasing initial concentration and would depend upon the formation of micelle in aqueous solution. It appears that the ultrasound frequency, dissolved gases, and initial concentration play an important role on the sonolysis of DBS. Sonolysis of DBS mainly take place at the interfacial region of cavitation bubbles by both OH radical attack and pyrolysis to alkyl chain, aromatic ring, and headgroup.
Keywords
Sonochemistry; Cavitation Bubble; OH radical; Pyrolysis; Sodium Dodecylbenzene Sulfonate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Yim, Y. Nagata, Y. Maeda, J. Phys. Chem. A, 2002,106, 104.   DOI   ScienceOn
2 A. E. Alegria, Y. Lion, T. Kondo, P. Riesz, J. Phys.Chem., 1989, 93, 4908.   DOI
3 M. A. Beckett, I. Hua, J. Phys. Chem. A, 2001, 105,3796.   DOI   ScienceOn
4 K. S. Suslick, Ultrasound: its chemical, physical, and biological effects, VCH, Weinheim, 1988.
5 C. von Sonntag, G. Mark, A. Tauber, H. P. Schuchmann,In “Advances in Sonochemistry” T. J. Mason, Eds., JAIPress Ltd, Stamford, CT, U.S.A., 1999, 5, 109.
6 G. B. Buxton, C. L. Greenstock, W. P. Helman, A. B.Ross, J. Phys. Chem.Ref. Data, 1988, 17, 513.   DOI
7 H. Destaillats, H. M. Hung, M. R. Hoffmann, Environ.Sci. Technol., 2000, 34, 311.   DOI   ScienceOn
8 T. J. Mason, Practical Sonochemistry: User's Guide toApplications in Chemistry and Chemical Engineering,Ellis Horwood, West Sussex, 1991.
9 K. S. Suslick, Science, 1990, 247, 1439.   DOI   ScienceOn
10 C. Petrier, M. F. Lamy, A. Francony, A. Benahcene, B.David, J. Phys. Chem., 1994, 98, 10514.   DOI   ScienceOn
11 J. Z. Sostaric, P. Riesz, J. Am. Chem. Soc., 2001, 123,11010.   DOI   ScienceOn
12 K. Vinodgopal, M. Ashokkumar, F. Grieser, J. Phys. Chem. B, 2001, 105. 3338.   DOI   ScienceOn
13 A. Henglein, Advances in Sonochemistry, T. J. Mason,Eds., JAI Press Ltd, Stamford, CT, U.S.A., 1993, 3, 83.
14 A. Henglein, M. Gutierrez, J. Phys. Chem., 1988, 92,3705.   DOI   ScienceOn
15 T. J. Mason, Sonochemistry, Oxford University Press,Oxford, 1999.
16 I. Hua, R. H. Hechemer, M. R. Hoffmann, J. Phys.Chem., 1995. 99, 2335.   DOI   ScienceOn
17 B. Yim, Y. Yoo, Y. Nagata, Y. Maeda, Chem. Lett.,2001, 9, 938.
18 J. A. Frim, J. F. Rathman, L. K. Weavers, Wat. Res.,2003, 37, 3155.   DOI   ScienceOn
19 B. Yim, H. Okuno, Y. Nagata, Y. Maeda, J. Hazard.Mater., 2001, B81, 253.