Browse > Article
http://dx.doi.org/10.23093/FSI.2020.53.3.277

Current status of research on microbial disinfection of food using ultrasound  

Song, Kyung-Mo (Korea Food Research Institute)
Publication Information
Food Science and Industry / v.53, no.3, 2020 , pp. 277-283 More about this Journal
Abstract
Microbial disinfection is essential to increase the preservation and safety of food. In general, thermal sterilization technology is most frequently used, but it often causes nutrient denaturation, and deterioration of food quality. Accordingly, non-thermal sterilization using a novel technology is emerging as an alternative technology. Among them, ultrasonic technology produces a disinfection effect by promoting the destruction of microorganisms by cavitation. Ultrasound technology alone has a low effect, so research is being actively conducted to develop an effective technology by applying as a hurdle technology with various other technologies. Ultrasound can be treated with various processes including traditional sterilization methods such as heating, high pressure, and chemical treatment, as well as novel technologies such as ultraviolet irradiation. Ultrasound assisted sterilization technology still remains at the laboratory level, requiring additional research such as the development of equipment for industrial application and establishment of an optimal process.
Keywords
ultrasound; sterilization; cavitation; hurdle technology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bermudez-Aguirre D. Advances in Thermo-and Manothermosonication for Microbial Inactivation. pp. 15-37. In Ultrasound: Advances for Food Processing and Preservation. Bermudez-Aguirre D (ed). Academic Press. (2017)
2 Char CD, Mitilinaki E, Guerrero SN, Alzamora SM. Use of High-Intensity Ultrasound and UV-C Light to Inactivate Some Microorganisms in Fruit Juices. Food Bioprocess. Technol. 3: 797-803 (2010)   DOI
3 Chemat F, Huma Z, Khan MK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochem. 18: 813-835 (2011)   DOI
4 Earnshaw RG, Appleyard J, Hurst RM. Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int. J. Appl. Microbiol. 28: 197-219 (1995)   DOI
5 Evelyn, Silva FVM. Inactivation of Byssoclamys nivea ascospores in stawberry puree by high pressure, power ultrasound and thermal processing. Int. J. Food Microbiol. 214: 129-136 (2015)   DOI
6 Evelyn, Silva FVM. High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control 62: 365-372 (2016)   DOI
7 Gomez-Lopez VM, Ragaert P, Debevere J, Devlieghere F. Pulsed light for food decontamination: a review. Trends in Food Sci. Technol. 18: 464-473 (2007)   DOI
8 Lee H, Zhou B, Liang W, Feng H, Martin, SE Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling. J. Food Engin. 93: 354-364 (2009)   DOI
9 Huang E, Mittal GS, Griffiths MW. Inactivation of Salmonella enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound. Biosystems Engineering 94: 403-413 (2006)   DOI
10 Lee DU, Heinz V, Knorr D. Effects of combination treatments of nisin and high-intensity ultrasound with high pressure on the microbial inactivation in liquid whole egg. Innov. Food Sci. Emerg. Tech. 4: 387-393 (2003)   DOI
11 Lee NH. Emerging Technology - Application of Ultrasonic Technology for Protein Extraction. Bull. Food tech. 24: 369-376 (2011)
12 Lopez-Malo A, Guerrero S, Santiesteban A, Alzamora SM. Inactivation kinetics of Saccharomyces cerevisiae and Listeria monocytogenes in apple juice processed by novel technologies. In Proceedings of 2nd Mercosur Congress on Chemical Engineering. 4th Mercosur Congress on Process Systems Engineering. No. 0681 (2005)
13 Munoz A, Palgan I, Noci F, Cronin DA, Morgan DJ, Whyte P, Lyng JG. Combinations of selected non-thermal technologies and antimicrobials for microbial inactivation in a buffer system. Food Res. Int. 47: 100-105 (2012)   DOI
14 Pagan R, Manas P, Raso J, Condon S. Bacterial resistance to ultrasonic waves under pressure at nonlethal (manosonication) and lethal (manothermosonication) temperatures. Appl. Environ. Microbiol. 65: 297-300 (1999)   DOI
15 Park J, Na S, Lee Y. Present and future of non-thermal food processing technology. Food Sci. Ind. 43: 2-20 (2010)
16 Salleh-Mack SZ, Roberts JS. Ultrasound pasteurization. The effects of temperature, soluble solids, organic acids, and pH on the inactivation of Escherichia coli ATCC 25922. Ultrasonics Sonochem. 14: 323-329 (2007)   DOI
17 Piyasena P, Mohareb E, McKellar RC. Inactivation of microbes using ultrasound: a review. Int. J. Food Microbiol. 87: 207-216 (2003)   DOI
18 Raso JR, Condon S, Sala FJ. Influence of temperature and pressure on the lethality of ultrasound. Appl. Environ. Microbiol. 64: 465-471 (1998a)   DOI
19 Raso J, Palop A, Pagan R, Condon S. Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J. Appl. Microbiol. 85: 849-854 (1998b)   DOI
20 Sandra NG, Mariana F, Marcela S, Mercedes GC. Hurdle technology using ultrasound for food preservation. pp. 39-99. In Ultrasound: Advances for Food Processing and Preservation. Bermudez-Aguirre D (ed). Academic Press. (2017)
21 Song KM, Jung SK, Kim YH, Kim YE, Lee NH. Development of industrial ultrasound system for mass production of collagen and biochemical characteristics of extracted collagen. Food Bioproduct. Process. 110: 96-103 (2018)   DOI
22 Tremarin A, Brandao TR, Silva CL. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. LWT. 78: 138-142 (2017)   DOI
23 Tsukamoto I, Yim B, Stavarache CE, Furuta M, Hashiba K, Maeda Y. Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultrasonics Sonochem. 11: 61-65 (2004)   DOI
24 Walkling-Ribeiro M, Noci F, Cronin DA, Lyng JG, Morgan DJ. Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food Bioproduct. Process. 87: 102-107 (2009)   DOI
25 Ugarte-Romero E, Feng H, Martin SE. Inactivation of Shigella boydii 18 IDPH and L. monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. J. Food Sci. 72: M103-M107 (2007)   DOI
26 Vyas S, Ting YP. A review of the application of ultrasound in bioleaching and insights from sonication in (bio) chemical processes. Resources. 7: 3 (2018)   DOI