• 제목/요약/키워드: Ulam stability

검색결과 355건 처리시간 0.016초

ORTHOGONALLY ADDITIVE AND ORTHOGONALLY QUADRATIC FUNCTIONAL EQUATION

  • Lee, Jung Rye;Lee, Sung Jin;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • 제21권1호
    • /
    • pp.1-21
    • /
    • 2013
  • Using the fixed point method, we prove the Ulam-Hyers stability of the orthogonally additive and orthogonally quadratic functional equation $$f(\frac{x}{2}+y)+f(\frac{x}{2}-y)+f(\frac{x}{2}+z)+f(\frac{x}{2}-z)=\frac{3}{2}f(x)-\frac{1}{2}f(-x)+f(y)+f(-y)+f(z)+f(-z)$$ (0.1) for all $x$, $y$, $z$ with $x{\bot}y$, in orthogonality Banach spaces and in non-Archimedean orthogonality Banach spaces.

JORDAN *-HOMOMORPHISMS BETWEEN UNITAL C*-ALGEBRAS

  • Gordji, Madjid Eshaghi;Ghobadipour, Norooz;Park, Choon-Kil
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.149-158
    • /
    • 2012
  • In this paper, we prove the superstability and the generalized Hyers-Ulam stability of Jordan *-homomorphisms between unital $C^*$-algebras associated with the following functional equation$$f(\frac{-x+y}{3})+f(\frac{x-3z}{c})+f(\frac{3x-y+3z}{3})=f(x)$$. Morever, we investigate Jordan *-homomorphisms between unital $C^*$-algebras associated with the following functional inequality $${\parallel}f(\frac{-x+y}{3})+f(\frac{x-3z}{3})+f(\frac{3x-y+3z}{3}){\parallel}\leq{\parallel}f(x)\parallel$$.

QUADRATIC (ρ1, ρ2)-FUNCTIONAL EQUATION IN FUZZY BANACH SPACES

  • Paokant, Siriluk;Shin, Dong Yun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제27권1호
    • /
    • pp.25-33
    • /
    • 2020
  • In this paper, we consider the following quadratic (ρ1, ρ2)-functional equation (0, 1) $$N(2f({\frac{x+y}{2}})+2f({\frac{x-y}{2}})-f(x)-f(y)-{\rho}_1(f(x+y)+f(x-y)-2f(x)-2f(y))-{\rho}_2(4f({\frac{x+y}{2}})+f(x-y)-f(x)-f(y)),t){\geq}{\frac{t}{t+{\varphi}(x,y)}}$$, where ρ2 are fixed nonzero real numbers with ρ2 ≠ 1 and 2ρ1 + 2ρ2≠ 1, in fuzzy normed spaces. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-functional equation (0.1) in fuzzy Banach spaces.

ERRATUM: “A FIXED POINT METHOD FOR PERTURBATION OF BIMULTIPLIERS AND JORDAN BIMULTIPLIERS IN C*-TERNARY ALGEBRAS” [J. MATH. PHYS. 51, 103508 (2010)]

  • YUN, SUNGSIK;GORDJI, MADJID ESHAGHI;SEO, JEONG PIL
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권3호
    • /
    • pp.237-246
    • /
    • 2016
  • Ebadian et al. proved the Hyers-Ulam stability of bimultipliers and Jordan bimultipliers in C*-ternary algebras by using the fixed point method. Under the conditions in the main theorems for bimultipliers, we can show that the related mappings must be zero. Moreover, there are some mathematical errors in the statements and the proofs of the results. In this paper, we correct the statements and the proofs of the results, and prove the corrected theorems by using the direct method.

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • YUN, SUNGSIK;LEE, JUNG RYE;SHIN, DONG YUN
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권3호
    • /
    • pp.247-263
    • /
    • 2016
  • Let $M_{1}f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}f(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_{2}f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$. Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_{1}f(x,y),t){\geq}N({\rho}M_{2}f(x,y),t)$ where ρ is a fixed real number with |ρ| < 1, and (0.2) $N(M_{2}f(x,y),t){\geq}N({\rho}M_{1}f(x,y),t)$ where ρ is a fixed real number with |ρ| < $\frac{1}{2}$.

ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN β-HOMOGENEOUS F-SPACES

  • LEE, HARIN;CHA, JAE YOUNG;CHO, MIN WOO;KWON, MYUNGJUN
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권3호
    • /
    • pp.319-328
    • /
    • 2016
  • In this paper, we solve the additive ρ-functional inequalities (0.1) ||f(2x-y)+f(y-x)-f(x)|| $\leq$ ||${\rho}(f(x+y)-f(x)-f(y))$||, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ||f(x+y)-f(x)-f(y)|| $\leq$ ||${\rho}(f(2x-y)-f(y-x)-f(x))$||, where ρ is a fixed complex number with |ρ| < $\frac{1}{2}$. Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in β-homogeneous F-spaces.

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS F-SPACES

  • Shim, EunHwa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권4호
    • /
    • pp.243-251
    • /
    • 2017
  • In this paper, we solve the additive ${\rho}-functional$ equations (0.1) $f(x+y)+f(x-y)-2f(x)={\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x))$, and (0.2) $2f(\frac{x+y}{2})+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$, where ${\rho}$ is a fixed (complex) number with ${\rho}{\neq}1$, Using the direct method, we prove the Hyers-Ulam stability of the additive ${\rho}-functional$ equations (0.1) and (0.2) in ${\beta}-homogeneous$ (complex) F-spaces.

ASYMPTOTIC BEHAVIORS OF JENSEN TYPE FUNCTIONAL EQUATIONS IN HALF PLANES

  • Kim, Sang-Youp;Kim, Gyu-Tae;Lee, Gi-Hui;Lee, Jae-Ho;Park, Gwang-Hyun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제18권2호
    • /
    • pp.113-128
    • /
    • 2011
  • Let f : ${\mathbb{R}}{\rightarrow}{\mathbb{C}}$. We consider the Hyers-Ulam stability of Jensen type functional inequality $$|f(px+qy)-Pf(x)-Qf(y)|{\leq}{\epsilon}$$ in the half planes {(x, y) : $kx+sy{\geq}d$} for fixed d, k, $s{\in}{\mathbb{R}}$ with $k{\neq}0$ or $s{\neq}0$. As consequences of the results we obtain the asymptotic behaviors of f satisfying $$|f(px+qy)-Pf(x)-Qf(y)|{\rightarrow}0$$ as $kx+sy{\rightarrow}{\infty}$.

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY BANACH SPACES

  • LEE, SUNG JIN;SEO, JEONG PIL
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권2호
    • /
    • pp.163-179
    • /
    • 2016
  • Let $M_1f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_2f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$ Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_1f(x,y)-{\rho}M_2f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ and (0.2) $N(M_2f(x,y)-{\rho}M_1f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$ in fuzzy Banach spaces, where ρ is a fixed real number with ρ ≠ 1.

ADDITIVE ρ-FUNCTIONAL INEQUALITIES

  • LEE, SUNG JIN;LEE, JUNG RYE;SEO, JEONG PIL
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권2호
    • /
    • pp.155-162
    • /
    • 2016
  • In this paper, we solve the additive ρ-functional inequalities (0.1)${\parallel}f(x+y)+f(x-y)-2f(x){\parallel}$ $\leq$ ${\parallel}{\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ${\parallel}2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$ $\leq$ ${\parallel}{\rho}f(x+y)+f(x-y)-2f(x){\parallel}$, where ρ is a fixed complex number with |ρ| < 1. Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.