ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN β-HOMOGENEOUS F-SPACES |
LEE, HARIN
(MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)
CHA, JAE YOUNG (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL) CHO, MIN WOO (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL) KWON, MYUNGJUN (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL) |
1 | M. Adam: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 4 (2011), 50-59. DOI |
2 | T. Aoki: On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. DOI |
3 | L. Cădariu, L. Găvruta & P. Găvruta: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67. DOI |
4 | A. Chahbi & N. Bounader: On the generalized stability of d’Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204. DOI |
5 | P.W. Cholewa. Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86. DOI |
6 | G. Z. Eskandani & P. Găvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465. DOI |
7 | P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. DOI |
8 | C. Park: Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 9 (2015), 397-407. |
9 | D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. DOI |
10 | C. Park: Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl. 5 (2012), 28-36. DOI |
11 | C. Park: Additive ρ-functional inequalities and equations. J. Math. Inequal. 9 (2015), 17-26. |
12 | C. Park, K. Ghasemi, S.G. Ghaleh & S. Jang: Approximate n-Jordan ∗-homomorphisms in C∗-algebras. J. Comput. Anal. Appl. 15 (2013), 365-368. |
13 | C. Park, A. Najati & S. Jang: Fixed points and fuzzy stability of an additive-quadratic functional equation. J. Comput. Anal. Appl. 15 (2013), 452–462. |
14 | Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. DOI |
15 | K. Ravi, E. Thandapani & B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27. |
16 | S. Rolewicz: Metric Linear Spaces. PWN-Polish Scientific Publishers, Warsaw, 1972. |
17 | S. Schin, D. Ki, J. Chang & M. Kim: Random stability of quadratic functional equations: a fixed point approach. J. Nonlinear Sci. Appl. 4 (2011), 37-49. DOI |
18 | S. Shagholi, M. Bavand Savadkouhi & M. Eshaghi Gordji: Nearly ternary cubic homomorphism in ternary Fréchet algebras, J. Comput. Anal. Appl. 13 (2011), 1106-1114. |
19 | S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960. |
20 | S. Shagholi, M. Eshaghi Gordji & M. Bavand Savadkouhi: Stability of ternary quadratic derivation on ternary Banach algebras. J. Comput. Anal. Appl. 13 (2011), 1097-1105. |
21 | D. Shin, C. Park & Sh. Farhadabadi: On the superstability of ternary Jordan C∗-homomorphisms. J. Comput. Anal. Appl. 16 (2014), 964-973. |
22 | D. Shin, C. Park & Sh. Farhadabadi: Stability and superstability of J∗-homomorphisms and J∗-derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl. 17 (2014), 125-134. |
23 | F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. DOI |
24 | C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6 (2013), 51-59. DOI |
25 | S. Zolfaghari: Approximation of mixed type functional equations in p-Banach spaces. J. Nonlinear Sci. Appl. 3 (2010), 110-122. DOI |