Browse > Article
http://dx.doi.org/10.7468/jksmeb.2016.23.3.319

ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN β-HOMOGENEOUS F-SPACES  

LEE, HARIN (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)
CHA, JAE YOUNG (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)
CHO, MIN WOO (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)
KWON, MYUNGJUN (MATHEMATICS BRANCH, SEOUL SCIENCE HIGH SCHOOL)
Publication Information
The Pure and Applied Mathematics / v.23, no.3, 2016 , pp. 319-328 More about this Journal
Abstract
In this paper, we solve the additive ρ-functional inequalities (0.1) ||f(2x-y)+f(y-x)-f(x)|| $\leq$ ||${\rho}(f(x+y)-f(x)-f(y))$||, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ||f(x+y)-f(x)-f(y)|| $\leq$ ||${\rho}(f(2x-y)-f(y-x)-f(x))$||, where ρ is a fixed complex number with |ρ| < $\frac{1}{2}$. Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in β-homogeneous F-spaces.
Keywords
Hyers-Ulam stability; β -homogeneous F-space; additive ρ -functional inequality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Adam: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 4 (2011), 50-59.   DOI
2 T. Aoki: On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.   DOI
3 L. Cădariu, L. Găvruta & P. Găvruta: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67.   DOI
4 A. Chahbi & N. Bounader: On the generalized stability of d’Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.   DOI
5 P.W. Cholewa. Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.   DOI
6 G. Z. Eskandani & P. Găvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465.   DOI
7 P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.   DOI
8 C. Park: Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 9 (2015), 397-407.
9 D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.   DOI
10 C. Park: Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl. 5 (2012), 28-36.   DOI
11 C. Park: Additive ρ-functional inequalities and equations. J. Math. Inequal. 9 (2015), 17-26.
12 C. Park, K. Ghasemi, S.G. Ghaleh & S. Jang: Approximate n-Jordan ∗-homomorphisms in C-algebras. J. Comput. Anal. Appl. 15 (2013), 365-368.
13 C. Park, A. Najati & S. Jang: Fixed points and fuzzy stability of an additive-quadratic functional equation. J. Comput. Anal. Appl. 15 (2013), 452–462.
14 Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.   DOI
15 K. Ravi, E. Thandapani & B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27.
16 S. Rolewicz: Metric Linear Spaces. PWN-Polish Scientific Publishers, Warsaw, 1972.
17 S. Schin, D. Ki, J. Chang & M. Kim: Random stability of quadratic functional equations: a fixed point approach. J. Nonlinear Sci. Appl. 4 (2011), 37-49.   DOI
18 S. Shagholi, M. Bavand Savadkouhi & M. Eshaghi Gordji: Nearly ternary cubic homomorphism in ternary Fréchet algebras, J. Comput. Anal. Appl. 13 (2011), 1106-1114.
19 S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
20 S. Shagholi, M. Eshaghi Gordji & M. Bavand Savadkouhi: Stability of ternary quadratic derivation on ternary Banach algebras. J. Comput. Anal. Appl. 13 (2011), 1097-1105.
21 D. Shin, C. Park & Sh. Farhadabadi: On the superstability of ternary Jordan C-homomorphisms. J. Comput. Anal. Appl. 16 (2014), 964-973.
22 D. Shin, C. Park & Sh. Farhadabadi: Stability and superstability of J-homomorphisms and J-derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl. 17 (2014), 125-134.
23 F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.   DOI
24 C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6 (2013), 51-59.   DOI
25 S. Zolfaghari: Approximation of mixed type functional equations in p-Banach spaces. J. Nonlinear Sci. Appl. 3 (2010), 110-122.   DOI