References
- T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- B. Batko: Stability of an alternative functional equation. J. Math. Anal. Appl. 339 (2008), 303-311. https://doi.org/10.1016/j.jmaa.2007.07.001
- B. Batko: On approximation of approximate solutions of Dhombres' equation J. Math. Anal. Appl. 340 (2008), 424-432. https://doi.org/10.1016/j.jmaa.2007.08.009
- D.G. Bourgin: Class of transformations and bordering transformations. Bull. Amer. Math. Soc. 57 (1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
- D.G. Bourgin: Multiplicative transformations Proc. Nat. Academy Sci. of U.S.A. 36 (1950), 564-570. https://doi.org/10.1073/pnas.36.10.564
- J. Brzdek: On stability of a family of functional equations. Acta Mathematica Hungarica 128 (2010), 139-149. https://doi.org/10.1007/s10474-010-9169-8
- J. Brzdek: On the quotient stability of a family of functional equations. Nonlinear Analysis TMA 71 (2009), 4396-4404. https://doi.org/10.1016/j.na.2009.02.123
- J. Brzdek: On a method of proving the Hyers-Ulam stability of functional equations on restricted domains. The Austr. J. Math. Anal. Appl. 6 (2009), 1-10.
- J. Brzdek & J. Sikorska: A conditional exponential functional equation and its stability. Nonlinear Analysis TMA 72 (2010), 2929-2934.
- S. Czerwik: Stability of Functional Equations of Ulam-Hyers-Rassias Type. Hadronic Press, Inc., Palm Harbor, Florida, Florida, 2003.
- G.L. Forti: The stability of homomorphisms and amenablity with applications to func- tional equations. Abh. Math. Sem. Univ. Hamburg 57 (1987), 215-226. https://doi.org/10.1007/BF02941612
- D.H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D.H. Hyers, G. Isac & Th.M. Rassias: Stability of functional equations in several variables. Birkhauser, 1998.
- S.M. Jung: Hyers-Ulam stability of Jensen's equation and its application. Proc. Amer. Math. Soc. 126 (1998), 3137-3143. https://doi.org/10.1090/S0002-9939-98-04680-2
- K.-W. Jun & H.-M. Kim: Stability problem for Jensen-type functional equations of cubic mappings. Acta Mathematica Sinica, English Series 22 (2006), no. 6, 1781-1788. https://doi.org/10.1007/s10114-005-0736-9
- G.H. Kim & Y.H. Lee: Boundedness of approximate trigonometric functional equations. Appl. Math. Letters 31 (2009), 439-443.
- Z. Moszner: On the stability of functional equations. Aequationes Math. 77 (2009), 33-88. https://doi.org/10.1007/s00010-008-2945-7
- C.G. Park: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. Bull. Sci. Math. 132 (2008), 87-96. https://doi.org/10.1016/j.bulsci.2006.07.004
- J.M. Rassias & M.J. Rassias: On the Ulam stability of Jensen and Jensen type mappings on restricted domains J. Math. Anal. Appl. 281 (2003), 516-524. https://doi.org/10.1016/S0022-247X(03)00136-7
- J.M. Rassias: On the Ulam stability of mixed type mappings on restricted domains. J. Math. Anal. Appl. 276 (2002), 747-762. https://doi.org/10.1016/S0022-247X(02)00439-0
- Th.M. Rassias: On the stability of linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- J. Sikorska: Exponential functional equation on spheres. Appl. Math. Letters. 23 (2010), 156-160. https://doi.org/10.1016/j.aml.2009.09.004
- J. Sikorska: On two conditional Pexider functinal equations and their stabilities. Nonlinear Analysis TMA 70 (2009), 2673-2684. https://doi.org/10.1016/j.na.2008.03.054
- J. Sikorska: On a Pexiderized conditional exponential functional equation. Acta Mathematica Hungarica 125 (2009), 287-299. https://doi.org/10.1007/s10474-009-9019-8
-
F. Skof: Sull'approssimazione delle applicazioni localmente
$\delta$ -additive. Atii Accad. Sci.Torino Cl. Sci. Fis. Mat. Natur. 117 (1983), 377-389. - S.M. Ulam: A collection of mathematical problems. Interscience Publ., New York, 1960.