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ERRATUM: “A FIXED POINT METHOD FOR PERTURBATION
OF BIMULTIPLIERS AND JORDAN BIMULTIPLIERS IN

C∗-TERNARY ALGEBRAS” [J. MATH. PHYS. 51, 103508 (2010)]

Sungsik Yun a, Madjid Eshaghi Gordji b and Jeong Pil Seo c, ∗

Abstract. Ebadian et al.1 proved the Hyers-Ulam stability of bimultipliers and
Jordan bimultipliers in C∗-ternary algebras by using the fixed point method.

Under the conditions in the main theorems for bimultipliers, we can show that
the related mappings must be zero. Moreover, there are some mathematical errors in
the statements and the proofs of the results. In this paper, we correct the statements
and the proofs of the results, and prove the corrected theorems by using the direct
method.

1. Introduction and Preliminaries

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary
product (x, y, z) → [xyz] of A3 into A, which is C-linear in the outer variables, con-
jugate C-linear in the middle variable, and associative in the sense that [xy[zwv]] =
[x[wzy]v] = [[xyz]wv], and satisfies ‖[xyz]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[xxx]‖ = ‖x‖3.

Definition 1.1 ([1]). Let A be a C∗-ternary algebra. A C-bilinear mapping T :
A×A → A is called a C∗-ternary bimultiplier if it satisfies

T ([xyz], w) = [T (x, y)zw],

T (x, [yzw]) = [xyT (z, w)]

for all x, y, z ∈ A.

The third variable of the left side in the first equality is C-linear and the second
variable of the left side in the first equality is conjugate C-linear. But the third
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variable of the right side in the first equality is conjugate C-linear and the second
variable of the right side in the first equality is C-linear. The third variable of the
left side in the second equality is conjugate C-linear and the second variable of the
left side in the second equality is C-linear. But the third variable of the right side in
the second equality is C-linear and the second variable of the right side in the second
equality is conjugate C-linear. So T must be zero. Hence all the mappings T , related
to bimultiplers, must be zero. So the results on bimultipliers are meaningless.

Thus we correct the definition of C∗-ternary bimultiplier as follows.

Definition 1.2. Let A be a C∗-ternary algebra. A C-bilinear mapping T : A×A →
A is called a C∗-ternary bimultiplier if it satisfies

T ([xy∗z], w) = [T (x, y)z∗w],

T (x, [yz∗w]) = [xy∗T (z, w)]

for all x, y, z ∈ A.

Definition 1.3 ([1]). Let A be a C∗-ternary algebra. A C-bilinear mapping T :
A×A → A is called a C∗-ternary Jordan bimultiplier if it satisfies

T ([xxx], x) = [T (x, x)xx],

T (x, [xxx]) = [xxT (x, x)]

for all x ∈ A.

With respect to the definition of bimultipler, we can correct the definition of
C∗-ternary Jordan bimultiplier as follows.

Definition 1.4. Let A be a C∗-ternary algebra. A C-bilinear mapping T : A×A →
A is called a C∗-ternary Jordan bimultiplier if it satisfies

T ([xx∗x], x) = [T (x, x)x∗x],

T (x, [xx∗x]) = [xx∗T (x, x)]

for all x ∈ A.

The stability problem of functional equations originated from a question of Ulam2

concerning the stability of group homomorphisms. Hyers3 gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was gen-
eralized by Aoki4 for additive mappings and by Th.M. Rassias5 for linear mappings
by considering an unbounded Cauchy difference. The stability problems of various
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functional equations have been extensively investigated by a number of authors (see
Refs. 6–11).

2. Hyers-Ulam Stability of Bimultipliers
and Jordan Bimultipliers

Throughout this section, assume that A is a C∗-ternary algebra.
For a given mapping f : A×A → A, we define

Eλ,µf(x, y, z, w) = f(λx + λy, µz − µw) + f(λx− λy, µz + µw)

−2λµf(x, z) + 2λµf(y, w)

for all x, y, z, w ∈ A and all λ, µ ∈ T1 := {ν ∈ C : |ν| = 1}.
From now on, assume that f(0, 0) = 0.
We need the following lemma to obtain the main results.

Lemma 2.1 ([12]). Let f : A×A → A be a mapping satisfying Eλ,µf(x, y, z, w) = 0
for all x, y, z, w ∈ A and all λ, µ ∈T1. Then the mapping f : A×A → A is C-bilinear.

Theorem 2.2. Let f : A × A → A be a uniformly continuous mapping for which
there exists a function ϕ : A4 → [0,∞) such that

‖Eλ,µf(x, y, z, w)‖ ≤ ϕ(x, y, z, w),(1)

‖f([xy∗z], w)− [f(x, y)z∗w]‖+ ‖f(x, [yz∗w])− [xy∗f(z, w)]‖ ≤ ϕ(x, y, z, w),(2)

Φ(x, y, z, w) :=
∞∑

n=0

1
4n

ϕ(2nx, 2ny, 2nz, 2nw) < ∞(3)

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C∗-ternary
bimultiplier T : A×A → A such that

‖f(x, z)− T (x, z)‖ ≤ 3
8
Φ(x, x, z,−z) +

1
8
Φ(x,−x, z, z) +

1
4
Φ(0, x, 0, z)(4)

for all x, z ∈ A.

Proof. Letting λ = µ = 1, y = −x and w = z in (1), we get

‖f(2x, 2z)− 2f(x, z) + f(−x, z)‖ ≤ ϕ(x,−x, z, z)(5)

for all x, z ∈ A. Letting λ = µ = 1 and x = z = 0 in (1), we get

‖f(y,−w) + f(−y, w) + 2f(y, w)‖ ≤ ϕ(0, y, 0, w)(6)
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for all y, w ∈ A. Replacing y by x and w by z in (6), we get

‖f(x,−z) + f(−x, z) + 2f(x, x)‖ ≤ ϕ(0, x, 0, x)(7)

for all x, z ∈ A. Letting λ = µ = 1, y = x and w = −z in (1), we get

‖f(2x, 2z)− 2f(x, z) + f(x,−z)‖ ≤ ϕ(x, x, z,−z)(8)

for all x, z ∈ A. By (5) and (8), we obtain

‖2f(x,−z)− 2f(−x, z)‖ ≤ ϕ(x, x, z,−z) + ϕ(x,−x, z, z)(9)

for all x, z ∈ A. By (7) and (8), we obtain

‖f(2x, 2z)− 4f(x, z) + f(x,−z)− f(−x, z)‖(10)

≤ ϕ(x, x, z,−z) + ϕ(0, x, 0, z)

for all x, z ∈ A. By (9) and (10), we have

‖f(2x, 2z)− 4f(x, z)‖ ≤ 3
2
ϕ(x, x, z,−z) +

1
2
ϕ(x,−x, z, z) + ϕ(0, x, 0, z) = M(x, z)

and so ∥∥∥∥f(x, z)− 1
4
f(2x, 2z)

∥∥∥∥ ≤
1
4
M (x, z)(11)

for all x, z ∈ A. Here M(x, z) := 3
2ϕ(x, x, z,−z) + 1

2ϕ(x,−x, z, z) + ϕ(0, x, 0, z) for
all x, z ∈ A.

It follows from (11) that
∥∥∥∥

1
4l

f(2lx, 2lz)− 1
4m

f(2mx, 2mz)
∥∥∥∥ ≤

m−1∑

j=l

1
4j+1

M
(
2jx, 2jz

)
(12)

for all x, z ∈ A and all nonnegative integers m, l with m > l. This implies that
the sequence

{
1
4n f(2nx, 2nz)

}
is a Cauchy sequence for all x, z ∈ A. Since A is

complete, the sequence
{

1
4n f(2nx, 2nz)

}
converges. Thus one can define the mapping

T : A×A → A by

T (x, z) := lim
n→∞

1
4n

f(2nx, 2nz)

for all x, z ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (12), we
get (4).

By the definition of the mapping T , we have

‖Eλ,µT (x, y, z, w)‖ = lim
n→∞

1
4n
‖Eλ,µf(2nx, 2ny, 2nz, 2nw)‖

≤ lim
n→∞

1
4n

ϕ(2nx, 2ny, 2nz, 2nw) = 0



BIMULTIPLIERS IN C∗-TERNARY ALGEBRAS 241

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. By Lemma 2.1, the mapping T : A×A → A

is C-bilinear.
Let T ′ : A×A → A be another C-bilinear mapping satisfying (4). Then we have

‖T (x, z)− T ′(x, z)‖ =
1
4n
‖T (2nx, 2nz)− T ′(2nx, 2nz)‖

≤ 1
4n
‖T (2nx, 2nz)− f(2nx, 2nz)‖+

1
4n
‖f(2nx, 2nz)− T ′(2nx, 2nz)‖

≤ 2
4n

(
3
8
Φ(2nx, 2nx, 2nz,−2nz)+

1
8
Φ(2nx,−2nx, 2nz, 2nz)+

1
4
Φ(0, 2nx, 0, 2nz)

)
,

which tends to zero as n →∞ for all x, z ∈ A. This proves the uniqueness of T .
It is easy to show that T (x, z) = limn→∞ 1

16n f(8nx, 2nz) = limn→∞ 1
16n f(2nx, 8nz)

for all x, z ∈ A, since T is bi-additive and f is uniformly continuous.
It follows from (2) and (3) that

‖T ([xy∗z], w)− [T (x, y)z∗w]‖+ ‖T (x, [yz∗w])− [xy∗T (z, w)]‖
= lim

n→∞
1

16n
(‖f(8n[xy∗z], 2nw)− [f(2nx, 2ny)(2nz)∗(2nw)]‖

+ ‖f(2nx, 8n[yz∗w])− [(2nx)(2ny)∗f(2nz, 2nw)]‖)
≤ lim

n→∞
1

16n
ϕ(2nx, 2ny, 2nz, 2nw) ≤ lim

n→∞
1
4n

ϕ(2nx, 2ny, 2nz, 2nw) = 0

for all x, y, z, w ∈ A. So

T ([xy∗z], w) = [T (x, y)z∗w]

and

T (x, [yz∗w]) = [xy∗T (z, w)]

for all x, y, z, w ∈ A.

Therefore, the mapping T : A × A → A is a unique C∗-ternary bimultiplier
satisfying (4). ¤

Corollary 2.3. Let θ and p be positive real numbers with p < 2 and let f : A×A → A

be a uniformly continuous mapping such that

‖Eλ,µf(x, y, z, w)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p),(13)

‖f([xy∗z], w)− [f(x, y)z∗w]‖+ ‖f(x, [yz∗w])− [xy∗f(z, w)]‖(14)

≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)
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for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C∗-ternary
bimultiplier T : A×A → A such that

‖f(x, z)− T (x, z)‖ ≤ 5θ

4− 2p
(‖x‖p + ‖z‖p)(15)

for all x, z ∈ A.

Proof. Letting ϕ(x, y, z, w) := θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) in Theorem 2.2, we get
the desired result. ¤

Theorem 2.4. Let f : A × A → A be a uniformly continuous mapping for which
there exists a function ϕ : A4 → [0,∞) satisfying (1), (2) and

∞∑

n=1

16nϕ
( x

2n
,

y

2n
,

z

2n
,

w

2n

)
< ∞(16)

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique C∗-ternary
bimultiplier T : A×A → A such that

‖f(x, z)− T (x, z)‖ ≤ 3
8
Φ(x, x, z,−z) +

1
8
Φ(x,−x, z, z) +

1
4
Φ(0, x, 0, z)(17)

for all x, z ∈ A. Here

Φ(x, y, z, w) :=
∞∑

n=1

4nϕ
( x

2n
,

y

2n
,

z

2n
,

w

2n

)

for all x, y, z, w ∈ A.

Proof. It follows from (11) that∥∥∥f(x, z)− 4f
(x

2
,
z

2

)∥∥∥ ≤ M
(x

2
,
x

2
,
z

2
,
z

2

)
(18)

for all x, z ∈ A.
It follows from (18) that

∥∥∥4lf
( x

2l
,

z

2l

)
− 4mf

( x

2m
,

z

2m

)∥∥∥ ≤
m∑

j=l+1

4j−1M
( x

2j
,

z

2j
z
)

(19)

for all x, z ∈ A and all nonnegative integers m, l with m > l. This implies that the
sequence

{
4nf

(
x
2n , z

2n

)}
is a Cauchy sequence for all x, z ∈ A. Since A is complete,

the sequence
{
4nf

(
x
2n , z

2n

)}
converges. Thus one can define the mapping T : A ×

A → A by
T (x, z) := lim

n→∞ 4nf
( x

2n
,

z

2n

)

for all x, z ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (19), we
get (17).
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By the definition of the mapping T , we have

‖Eλ,µT (x, y, z, w)‖ = lim
n→∞ 4n

∥∥∥Eλ,µf
( x

2n
,

y

2n
,

z

2n
,

w

2n

)∥∥∥

≤ lim
n→∞ 4nϕ

( x

2n
,

y

2n
,

z

2n
,

w

2n

)

≤ lim
n→∞ 16nϕ

( x

2n
,

y

2n
,

z

2n
,

w

2n

)
= 0

for all λ, µ ∈ T1 and all x, y, z, w ∈ A. By Lemma 2.1, the mapping T : A×A → A

is C-bilinear.
Let T ′ : A×A → A be another C-bilinear mapping satisfying (4). Then we have

‖T (x, z)− T ′(x, z)‖ = 4n
∥∥∥T

( x

2n
,

z

2n

)
− T ′

( x

2n
,

z

2n

)∥∥∥

≤ 4n
∥∥∥T

( x

2n
,

z

2n

)
− f

( x

2n
,

z

2n

)∥∥∥ + 4n
∥∥∥f

( x

2n
,

z

2n

)
− T ′

( x

2n
,

z

2n

)∥∥∥

≤ 2 · 4n

(
3
8
Φ

( x

2n
,

x

2n
,

z

2n
,− z

2n

)
+

1
8
Φ

( x

2n
,− x

2n
,

z

2n
,

z

2n

)
+

1
4
Φ

(
0,

x

2n
, 0,

z

2n

))
,

which tends to zero as n →∞ for all x, z ∈ A. This proves the uniqueness of T .
It is easy to show that T (x, z) = limn→∞ 16nf

(
x
8n , z

2n

)
= limn→∞ 16nf

(
x
2n , z

8n

)

for all x, z ∈ A, since T is bi-additive and f is uniformly continuous.
It follows from (2) and (16) that

‖T ([xy∗z], w)− [T (x, y)z∗w]‖+ ‖T (x, [yz∗w])− [xy∗T (z, w)]‖

= lim
n→∞ 16n

(∥∥∥∥f

(
[xy∗z]

8n
,

w

2n

)
−

[
f

( x

2n
,

y

2n

) z∗

2n

w

2n

]∥∥∥∥

+
∥∥∥∥f

(
x

2n
,
[yz∗w]

8n

)
−

[
x

2nx

y∗

2n
f

( z

2n
,

w

2n

)]∥∥∥∥
)

≤ lim
n→∞ 16nϕ

( x

2n
,

y

2n
,

z

2n
,

w

2n

)
= 0

for all x, y, z, w ∈ A. So

T ([xy∗z], w) = [T (x, y)z∗w]

and

T (x, [yz∗w]) = [xy∗T (z, w)]

for all x, y, z, w ∈ A.

Therefore, the mapping T : A × A → A is a unique C∗-ternary bimultiplier
satisfying (17). ¤
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Corollary 2.5. Let θ and p be positive real numbers with p > 4 and let f : A×A → A

be a uniformly continuous mapping satisfying (13) and (14). Then there exists a
unique C∗-ternary bimultiplier T : A×A → A such that

‖f(x, z)− T (x, z)‖ ≤ 5θ

2p − 4
(‖x‖p + ‖z‖p)(20)

for all x, z ∈ A.

Proof. Letting ϕ(x, y, z, w) := θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) in Theorem 2.4, we get
the desired result. ¤

Now, we prove the Hyers-Ulam stability of Jordan bimultipliers in C∗-ternary
algebras by using the direct method.

Theorem 2.6. Let f : A × A → A be a uniformly continuous mapping for which
there exists a function ϕ : A4 → [0,∞) satisfying (1), (3) and

‖f([xx∗x], x)− [f(x, x)x∗x]‖+ ‖f(x, [xx∗x])− [xx∗f(x, x)]‖(21)

≤ ϕ(x, x, x, x)

for all x ∈ A. Then there exists a unique C∗-ternary Jordan bimultiplier T : A×A →
A satisfying (4).

Proof. By the same reasoning as in the proof of Theorem 2.2, there exists a unique
C-bilinear mapping T : A × A → A satisfying (4). The mapping T : A × A → A is
given by

T (x, z) := lim
n→∞

1
4n

f(2nx, 2nz)

for all x, z ∈ A.

It follows from (2) and (21) that

‖T ([xx∗x], x)− [T (x, x)x∗x]‖+ ‖T (x, [xx∗x])− [xx∗T (x, x)]‖
= lim

n→∞
1

16n
(‖f(8n[xx∗x], 2nx)− [f(2nx, 2nx)(2nx)∗(2nx)]‖

+ ‖f(2nx, 8n[xx∗x])− [(2nx)(2nx)∗f(2nx, 2nx)]‖)
≤ lim

n→∞
1

16n
ϕ(2nx, 2nx, 2nx, 2nx) ≤ lim

n→∞
1
4n

ϕ(2nx, 2nx, 2nx, 2nx) = 0

for all x ∈ A. So

T ([xx∗x], x) = [T (x, x)x∗x]

and

T (x, [xx∗x]) = [xx∗T (x, x)]
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for all x ∈ A.

Therefore, the mapping T : A×A → A is a unique C∗-ternary Jordan bimultiplier
satisfying (4). ¤

Corollary 2.7. Let θ and p be positive real numbers with p < 2 and let f : A×A → A

be a uniformly continuous mapping satisfying (13) and

‖f([xx∗x], x)− [f(x, x)x∗x]‖+ ‖f(x, [xx∗x])− [xx∗f(x, x)]‖ ≤ 4θ‖x‖p(22)

for all x ∈ A. Then there exists a unique C∗-ternary Jordan bimultiplier T : A×A →
A satisfying (15).

Proof. Letting ϕ(x, y, z, w) := θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) in Theorem 2.6, we get
the desired result. ¤

Theorem 2.8. Let f : A × A → A be a uniformly continuous mapping for which
there exists a function ϕ : A4 → [0,∞) satisfying (1), (16) and (21). Then there
exists a unique C∗-ternary Jordan bimultiplier T : A×A → A satisfying (17).

Proof. The proof is similar to the proofs of Theorems 2.4 and 2.6. ¤

Corollary 2.9. Let θ and p be positive real numbers with p > 4 and let f : A×A → A

be a uniformly continuous mapping satisfying (13) and (22). Then there exists a
unique C∗-ternary Jordan bimultiplier T : A×A → A satisfying (20).

Proof. Letting ϕ(x, y, z, w) := θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) in Theorem 2.8, we get
the desired result. ¤
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