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ADDITIVE ρ-FUNCTIONAL INEQUALITIES
IN β-HOMOGENEOUS F -SPACES

Harin Lee a, Jae Young Cha b, ∗, Min Woo Cho c

and Myungjun Kwon d

Abstract. In this paper, we solve the additive ρ-functional inequalities

‖f(2x− y) + f(y − x)− f(x)‖ ≤ ‖ρ (f(x + y)− f(x)− f(y))‖ ,(0.1)

where ρ is a fixed complex number with |ρ| < 1, and

‖f(x + y)− f(x)− f(y)‖ ≤ ‖ρ(f(2x− y) + f(y − x)− f(x))‖,(0.2)

where ρ is a fixed complex number with |ρ| < 1
2
.

Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-
functional inequalities (0.1) and (0.2) in β-homogeneous F -spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[23] concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x)+ f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [8] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by
Rassias [14] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [7] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach. The stability of quadratic functional equation was proved by Skof [22]
for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space.
Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain
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E1 is replaced by an Abelian group. The stability problems of various functional
equations have been extensively investigated by a number of authors (see [1, 3, 4, 6,
9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 24, 25]).

Definition 1.1. Let X be a (complex) linear space. A nonnegative valued function
‖ · ‖ is an F -norm if it satisfies the following conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;
(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;
(FN3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X;
(FN4) ‖λnx‖ → 0 provided λn → 0;
(FN5) ‖λxn‖ → 0 provided xn → 0.
Then (X, ‖ · ‖) is called an F ∗-space. An F -space is a complete F ∗-space.

An F -norm is called β-homogeneous (β > 0) if ‖tx‖ = |t|β‖x‖ for all x ∈ X and
all t ∈ C and (X, ‖ · ‖) is called a β-homogeneous F -space (see [16]).

In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the
Hyers-Ulam stability of the additive ρ-functional inequality (0.1) in β-homogeneous
F -space.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the
Hyers-Ulam stability of the additive ρ-functional inequality (0.2) in β-homogeneous
F -space.

Throughout this paper, let β1, β2 be positive real numbers with β1 ≤ 1 and
β2 ≤ 1. Assume that X is a β1-homogeneous F -space with norm ‖ · ‖ and that Y is
a β2-homogeneous F -space with norm ‖ · ‖.

2. Additive ρ-functional Inequality (0.1)
in β-homogeneous F -spaces

Throughout this section, assume that ρ is a complex number with |ρ| < 1.
We solve and investigate the additive ρ-functional inequality (0.1) in β-homogeneous

F -spaces.

Lemma 2.1. If a mapping f : X → Y satisfies

‖f(2x− y) + f(y − x)− f(x)‖ ≤ ‖ρ (f(x + y)− f(x)− f(y))‖(2.1)

for all x, y ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (2.1).
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Letting x = 0 and y = 0 in (2.1), we get ‖f(0)‖ ≤ ‖ρ (f(0))‖ and so f(0) = 0
with |ρ| < 1.

Letting x = 0 in (2.1), we get ‖f(−y) + f(y)‖ ≤ 0 and so f is an odd mapping.
Letting x = z and y = z − w in (2.1), we get

‖f(z + w)− f(z)− f(w)‖ ≤ ‖ρ (f(2z − w) + f(w − z)− f(z))‖(2.2)

for all z, w ∈ X.
It follows from (2.1) and (2.2) that

‖f(2x− y) + f(y − x)− f(x)‖ ≤ ‖ρ (f(x + y)− f(x)− f(y))‖
≤ |ρ|2‖f(2x− y) + f(y − x)− f(x)‖

and so f(2x − y) + f(y − x) = f(x) for all x, y ∈ X. It is easy to show that f is
additive. ¤

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (2.1)
in β-homogeneous F -spaces.

Theorem 2.2. Let r > β2

β1
and θ be nonnegative real numbers and let f : X → Y be

a mapping satisfying

‖f(2x− y) + f(y − x)− f(x)‖(2.3)

≤ ‖ρ (f(x + y)− f(x)− f(y))‖+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2β1r − 2β2
‖x‖r(2.4)

for all x ∈ X.

Proof. Letting x = y = 0, in (2.3), we get ‖f(0)‖ ≤ 0. So f(0) = 0.
Letting y = 0 in (2.3), we get

‖f(2x) + f(−x)− f(x)‖ ≤ θ‖x‖r(2.5)

for all x ∈ X.
Letting x = 0 in (2.3), we get

‖f(y) + f(−y)‖ ≤ θ‖y‖r(2.6)

for all y ∈ X.
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From (2.5) and (2.6), we get

‖f(2x)− 2f(x)‖ ≤ ‖f(2x) + f(−x)− f(x)‖+ ‖f(x) + f(−x)‖
≤ 2θ‖x‖r(2.7)

for all x ∈ X. Hence
∥∥∥2lf

( x

2l

)
− 2mf

( x

2m

)∥∥∥ ≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥

≤ 2
2β1r

m−1∑

j=l

2β2j

2β1rj
θ‖x‖r(2.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.8) that the sequence {2kf( x

2k )} is Cauchy for all x ∈ X. Since Y is complete, the
sequence {2kf( x

2k )} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf
( x

2k

)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (2.8), we get
(2.4).

It follows from (2.3) that

‖A(2x− y) + A(y − x)−A(x)‖ = lim
n→∞

∥∥∥∥2n

(
f

(
2x− y

2n

)
+ f

(
y − x

2n

)
− f

( x

2n

))∥∥∥∥

≤ lim
n→∞

∥∥∥∥2nρ

(
f

(
x + y

2n

)
− f

( x

2n

)
− f

( y

2n

))∥∥∥∥

+ lim
n→∞

2β2n

2β1rn
θ(‖x‖r + ‖y‖r)

= ‖ρ (A (x + y)−A(x)−A(y))‖
for all x, y ∈ X. So

‖A(2x− y) + A(y − x)−A(x)‖ ≤ ‖ρ(A(x + y)−A(x)−A(y))‖
for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is additive.

Now, let T : X → Y be another additive mapping satisfying (2.4). Then we have

‖A(x)− T (x)‖ =
∥∥∥2qA

( x

2q

)
− 2qT

( x

2q

)∥∥∥

≤
∥∥∥2qA

( x

2q

)
− 2qf

( x

2q

)∥∥∥ +
∥∥∥2qT

( x

2q

)
− 2qf

( x

2q

)∥∥∥

≤ 4θ

2β1r − 2β2

2β2q

2β1qr
‖x‖r,
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which tends to zero as q →∞ for all x ∈ X. So we can conclude that A(x) = T (x)
for all x ∈ X. This proves the uniqueness of A, as desired. ¤

Theorem 2.3. Let r < β2

β1
and θ be nonnegative real numbers and let f : X → Y be

a mapping satisfying (2.3). Then there exists a unique additive mapping A : X → Y

such that

‖f(x)−A(x)‖ ≤ 2θ

2β2 − 2β1r
‖x‖r(2.9)

for all x ∈ X.

Proof. It follows from (2.7) that∥∥∥∥f(x)− 1
2
f(2x)

∥∥∥∥ ≤
2

2β2
θ‖x‖r

for all x ∈ X. Hence
∥∥∥∥

1
2l

f(2lx)− 1
2m

f(2mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
2j

f
(
2jx

)− 1
2j+1

f
(
2j+1x

)∥∥∥∥

≤ 2
2β2

m−1∑

j=l

2β1rj

2β2j
θ‖x‖r(2.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.10) that the sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f(2nx)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.10), we
get (2.9).

The rest of the proof is similar to the proof of Theorem 2.2. ¤

Remark 2.4. If ρ is a real number such that −1 < ρ < 1 and Y is a β-homogeneous
real F -space, then all the assertions in this section remain valid.

3. Additive ρ-functional Inequality (0.2)
in β-homogeneous F -spaces

Throughout this section, assume that ρ is a complex number with |ρ| < 1
2 .

We solve and investigate the additive ρ-functional inequality (0.2) in β-homogeneous
F -spaces.
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Lemma 3.1. If a mapping f : X → Y satisfies

‖f(x + y)− f(x)− f(y)‖ ≤ ‖ρ(f(2x− y) + f(y − x)− f(x))‖(3.1)

for all x, y ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖f(0)‖ ≤ 0. So f(0) = 0.
Letting y = x in (3.1), we get ‖f(2x)− 2f(x)‖ ≤ 0 and so

2f(x) = f(2x)(3.2)

for all x ∈ G.
Letting y = 2x in (3.1), we get ‖f(3x)− f(x)− f(2x)‖ ≤ 0 and from (3.2),

3f(x) = f(3x)(3.3)

for all x ∈ X.
Letting y = −x in (3.1), we get ‖f(x) + f(−x)‖ ≤ ‖ρ(f(3x) + f(−2x)− f(x))‖.

From (3.2) and (3.3), f(3x)+f(−2x)−f(x) = 2f(x)+2f(−x), so ‖f(x) + f(−x)‖ ≤
0, and we get

f(x) + f(−x) = 0(3.4)

for all x ∈ X. So f is an odd mapping.
Letting x = z, y = z − w in (3.1), we get

‖f(2z − w)− f(z)− f(z − w)‖ ≤ ‖ρ(f(z + w) + f(−w)− f(z))‖

and from (3.4),

‖f(2z − w) + f(w − z)− f(z)‖ ≤ ‖ρ(f(z + w)− f(z)− f(w))‖(3.5)

for all z, w ∈ X.
It follows from (3.1) and (3.5) that

‖f(x + y)− f(x)− (y)‖ ≤ ‖ρ(f(2x− y) + f(y − x)− f(x))‖
≤ |ρ|2‖f(x + y)− f(x)− f(y)‖

and so f(x + y) = f(x) + f(y) for all x, y ∈ X. So f is additive. ¤

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1)
in β-homogeneous F -spaces.
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Theorem 3.2. Let r > β2

β1
and θ be nonnegative real numbers and let f : X → Y be

a mapping satisfying

‖f (x + y)− f (x)− f (y) ‖(3.6)

≤ ‖ρ(f(2x− y) + f(y − x)− f(x))‖+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2β1r − 2β2
‖x‖r(3.7)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.4), we get ‖f(0)‖ ≤ 0. So f(0) = 0.
Letting y = x in (3.6), we get

‖f (2x)− 2f(x)‖ ≤ 2θ‖x‖r(3.8)

for all x ∈ X. So
∥∥∥2lf

( x

2l

)
− 2mf

( x

2m

)∥∥∥ ≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥

≤ 2
2β1r

m−1∑

j=l

2β2j

2β1rj
θ‖x‖r(3.9)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(3.9) that the sequence {2kf( x

2k )} is Cauchy for all x ∈ X. Since Y is complete, the
sequence {2kf( x

2k )} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf
( x

2k

)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (3.9), we get
(3.7).

The rest of the proof is similar to the proof of Theorem 2.2. ¤

Theorem 3.3. Let r < β2

β1
and θ be nonnegative real numbers and let f : X → Y be

a mapping satisfying (3.4). Then there exists a unique additive mapping A : X → Y

such that

‖f(x)−A(x)‖ ≤ 2θ

2β2 − 2β1r
‖x‖r(3.10)

for all x ∈ X.
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Proof. It follows from (3.8) that
∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤
2

2β2
θ‖x‖r

for all x ∈ X. Hence
∥∥∥∥

1
2l

f(2lx)− 1
2m

f(2mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
2j

f
(
2jx

)− 1
2j+1

f
(
2j+1x

)∥∥∥∥

≤ 2
2β2

m−1∑

j=l

2β1rj

2β2j
θ‖x‖r(3.11)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(3.11) that the sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f(2nx)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.11), we
get (3.10).

The rest of the proof is similar to the proof of Theorem 2.2. ¤

Remark 3.4. If ρ is a real number such that −1
2 < ρ < 1

2 and Y is a β-homogeneous
real F -space, then all the assertions in this section remain valid.
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