ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN β-HOMOGENEOUS F-SPACES

Harin Lee ${ }^{\text {a }}$, Jae Young Cha ${ }^{\text {b,* }}$, Min Woo Cho ${ }^{\text {c }}$ and Myunguun Kwon ${ }^{\text {d }}$

Abstract. In this paper, we solve the additive ρ-functional inequalities
(0.1) $\|f(2 x-y)+f(y-x)-f(x)\| \leq\|\rho(f(x+y)-f(x)-f(y))\|$,
where ρ is a fixed complex number with $|\rho|<1$, and
(0.2) $\|f(x+y)-f(x)-f(y)\| \leq\|\rho(f(2 x-y)+f(y-x)-f(x))\|$,
where ρ is a fixed complex number with $|\rho|<\frac{1}{2}$.
Using the direct method, we prove the Hyers-Ulam stability of the additive ρ functional inequalities (0.1) and (0.2) in β-homogeneous F-spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [23] concerning the stability of group homomorphisms.

The functional equation $f(x+y)=f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [8] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [2] for additive mappings and by Rassias [14] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach. The stability of quadratic functional equation was proved by Skof [22] for mappings $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain

[^0]E_{1} is replaced by an Abelian group. The stability problems of various functional equations have been extensively investigated by a number of authors (see $[1,3,4,6$, $9,10,11,12,13,15,17,18,19,20,21,24,25])$.

Definition 1.1. Let X be a (complex) linear space. A nonnegative valued function $\|\cdot\|$ is an F-norm if it satisfies the following conditions:
$\left(\mathrm{FN}_{1}\right)\|x\|=0$ if and only if $x=0$;
$\left(\mathrm{FN}_{2}\right)\|\lambda x\|=\|x\|$ for all $x \in X$ and all λ with $|\lambda|=1$;
$\left(\mathrm{FN}_{3}\right)\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$;
$\left(\mathrm{FN}_{4}\right)\left\|\lambda_{n} x\right\| \rightarrow 0$ provided $\lambda_{n} \rightarrow 0$;
$\left(\mathrm{FN}_{5}\right)\left\|\lambda x_{n}\right\| \rightarrow 0$ provided $x_{n} \rightarrow 0$.
Then $(X,\|\cdot\|)$ is called an F^{*}-space. An F-space is a complete F^{*}-space.
An F-norm is called β-homogeneous $(\beta>0)$ if $\|t x\|=|t|^{\beta}\|x\|$ for all $x \in X$ and all $t \in \mathbb{C}$ and $(X,\|\cdot\|)$ is called a β-homogeneous F-space (see [16]).

In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the Hyers-Ulam stability of the additive ρ-functional inequality (0.1) in β-homogeneous F-space.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the Hyers-Ulam stability of the additive ρ-functional inequality (0.2) in β-homogeneous F-space.

Throughout this paper, let β_{1}, β_{2} be positive real numbers with $\beta_{1} \leq 1$ and $\beta_{2} \leq 1$. Assume that X is a β_{1}-homogeneous F-space with norm $\|\cdot\|$ and that Y is a β_{2}-homogeneous F-space with norm $\|\cdot\|$.

2. Additive ρ-Functional Inequality (0.1) In β-HOMOGENEOUS F-SPACES

Throughout this section, assume that ρ is a complex number with $|\rho|<1$.
We solve and investigate the additive ρ-functional inequality (0.1) in β-homogeneous F-spaces.

Lemma 2.1. If a mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(2 x-y)+f(y-x)-f(x)\| \leq\|\rho(f(x+y)-f(x)-f(y))\| \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, then $f: X \rightarrow Y$ is additive.
Proof. Assume that $f: X \rightarrow Y$ satisfies (2.1).

Letting $x=0$ and $y=0$ in (2.1), we get $\|f(0)\| \leq\|\rho(f(0))\|$ and so $f(0)=0$ with $|\rho|<1$.

Letting $x=0$ in (2.1), we get $\|f(-y)+f(y)\| \leq 0$ and so f is an odd mapping.
Letting $x=z$ and $y=z-w$ in (2.1), we get

$$
\begin{equation*}
\|f(z+w)-f(z)-f(w)\| \leq\|\rho(f(2 z-w)+f(w-z)-f(z))\| \tag{2.2}
\end{equation*}
$$

for all $z, w \in X$.
It follows from (2.1) and (2.2) that

$$
\begin{aligned}
\|f(2 x-y)+f(y-x)-f(x)\| & \leq\|\rho(f(x+y)-f(x)-f(y))\| \\
& \leq|\rho|^{2}\|f(2 x-y)+f(y-x)-f(x)\|
\end{aligned}
$$

and so $f(2 x-y)+f(y-x)=f(x)$ for all $x, y \in X$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (2.1) in β-homogeneous F-spaces.

Theorem 2.2. Let $r>\frac{\beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& \|f(2 x-y)+f(y-x)-f(x)\| \tag{2.3}\\
& \quad \leq\|\rho(f(x+y)-f(x)-f(y))\|+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{2^{\beta_{1} r}-2^{\beta_{2}}}\|x\|^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y=0$, in (2.3), we get $\|f(0)\| \leq 0$. So $f(0)=0$.
Letting $y=0$ in (2.3), we get

$$
\begin{equation*}
\|f(2 x)+f(-x)-f(x)\| \leq \theta\|x\|^{r} \tag{2.5}
\end{equation*}
$$

for all $x \in X$.
Letting $x=0$ in (2.3), we get

$$
\begin{equation*}
\|f(y)+f(-y)\| \leq \theta\|y\|^{r} \tag{2.6}
\end{equation*}
$$

for all $y \in X$.

From (2.5) and (2.6), we get

$$
\begin{align*}
\|f(2 x)-2 f(x)\| & \leq\|f(2 x)+f(-x)-f(x)\|+\|f(x)+f(-x)\| \\
& \leq 2 \theta\|x\|^{r} \tag{2.7}
\end{align*}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \frac{2}{2^{\beta_{1} r}} \sum_{j=l}^{m-1} \frac{2^{\beta_{2} j}}{2^{\beta_{1} r j}} \theta\|x\|^{r} \tag{2.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.8) that the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.8), we get (2.4).

It follows from (2.3) that

$$
\begin{aligned}
\|A(2 x-y)+A(y-x)-A(x)\|= & \lim _{n \rightarrow \infty}\left\|2^{n}\left(f\left(\frac{2 x-y}{2^{n}}\right)+f\left(\frac{y-x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right)\right\| \\
\leq & \lim _{n \rightarrow \infty}\left\|2^{n} \rho\left(f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)\right\| \\
& +\lim _{n \rightarrow \infty} \frac{2^{\beta_{2} n}}{2^{\beta_{1} r n}} \theta\left(\|x\|^{r}+\|y\|^{r}\right) \\
= & \|\rho(A(x+y)-A(x)-A(y))\|
\end{aligned}
$$

for all $x, y \in X$. So

$$
\|A(2 x-y)+A(y-x)-A(x)\| \leq\|\rho(A(x+y)-A(x)-A(y))\|
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $A: X \rightarrow Y$ is additive.
Now, let $T: X \rightarrow Y$ be another additive mapping satisfying (2.4). Then we have

$$
\begin{aligned}
& \|A(x)-T(x)\|=\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} T\left(\frac{x}{2^{q}}\right)\right\| \\
& \quad \leq\left\|2^{q} A\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\|+\left\|2^{q} T\left(\frac{x}{2^{q}}\right)-2^{q} f\left(\frac{x}{2^{q}}\right)\right\| \\
& \quad \leq \frac{4 \theta}{2^{\beta_{1} r}-2^{\beta_{2}}} \frac{2^{\beta_{2} q}}{2^{\beta_{1} q r}}\|x\|^{r},
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $A(x)=T(x)$ for all $x \in X$. This proves the uniqueness of A, as desired.

Theorem 2.3. Let $r<\frac{\beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying (2.3). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{2^{\beta_{2}}-2^{\beta_{1} r}}\|x\|^{r} \tag{2.9}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.7) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{2}{2^{\beta_{2}}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \frac{2}{2^{\beta_{2}}} \sum_{j=l}^{m-1} \frac{2^{\beta_{1} r j}}{2^{\beta_{2} j}} \theta\|x\|^{r} \tag{2.10}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.10) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.10), we get (2.9).

The rest of the proof is similar to the proof of Theorem 2.2.
Remark 2.4. If ρ is a real number such that $-1<\rho<1$ and Y is a β-homogeneous real F-space, then all the assertions in this section remain valid.

3. Additive ρ-functional Inequality (0.2) in β-homogeneous F-spaces

Throughout this section, assume that ρ is a complex number with $|\rho|<\frac{1}{2}$.
We solve and investigate the additive ρ-functional inequality (0.2) in β-homogeneous F-spaces.

Lemma 3.1. If a mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq\|\rho(f(2 x-y)+f(y-x)-f(x))\| \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$, then $f: X \rightarrow Y$ is additive.
Proof. Assume that $f: X \rightarrow Y$ satisfies (3.1).
Letting $x=y=0$ in (3.1), we get $\|f(0)\| \leq 0$. So $f(0)=0$.
Letting $y=x$ in (3.1), we get $\|f(2 x)-2 f(x)\| \leq 0$ and so

$$
\begin{equation*}
2 f(x)=f(2 x) \tag{3.2}
\end{equation*}
$$

for all $x \in G$.
Letting $y=2 x$ in (3.1), we get $\|f(3 x)-f(x)-f(2 x)\| \leq 0$ and from (3.2),

$$
\begin{equation*}
3 f(x)=f(3 x) \tag{3.3}
\end{equation*}
$$

for all $x \in X$.
Letting $y=-x$ in (3.1), we get $\|f(x)+f(-x)\| \leq\|\rho(f(3 x)+f(-2 x)-f(x))\|$. From (3.2) and (3.3), $f(3 x)+f(-2 x)-f(x)=2 f(x)+2 f(-x)$, so $\|f(x)+f(-x)\| \leq$ 0 , and we get

$$
\begin{equation*}
f(x)+f(-x)=0 \tag{3.4}
\end{equation*}
$$

for all $x \in X$. So f is an odd mapping.
Letting $x=z, y=z-w$ in (3.1), we get

$$
\|f(2 z-w)-f(z)-f(z-w)\| \leq\|\rho(f(z+w)+f(-w)-f(z))\|
$$

and from (3.4),

$$
\begin{equation*}
\|f(2 z-w)+f(w-z)-f(z)\| \leq\|\rho(f(z+w)-f(z)-f(w))\| \tag{3.5}
\end{equation*}
$$

for all $z, w \in X$.
It follows from (3.1) and (3.5) that

$$
\begin{aligned}
\|f(x+y)-f(x)-(y)\| & \leq\|\rho(f(2 x-y)+f(y-x)-f(x))\| \\
& \leq|\rho|^{2}\|f(x+y)-f(x)-f(y)\|
\end{aligned}
$$

and so $f(x+y)=f(x)+f(y)$ for all $x, y \in X$. So f is additive.
We prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1) in β-homogeneous F-spaces.

Theorem 3.2. Let $r>\frac{\beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& \|f(x+y)-f(x)-f(y)\| \tag{3.6}\\
& \quad \leq\|\rho(f(2 x-y)+f(y-x)-f(x))\|+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{2^{\beta_{1} r}-2^{\beta_{2}}}\|x\|^{r} \tag{3.7}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y=0$ in (3.4), we get $\|f(0)\| \leq 0$. So $f(0)=0$.
Letting $y=x$ in (3.6), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq 2 \theta\|x\|^{r} \tag{3.8}
\end{equation*}
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\| \\
& \leq \frac{2}{2^{\beta_{1} r}} \sum_{j=l}^{m-1} \frac{2^{\beta_{2} j}}{2^{\beta_{1} r j}} \theta\|x\|^{r} \tag{3.9}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.9) that the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{2^{k} f\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.9), we get (3.7).

The rest of the proof is similar to the proof of Theorem 2.2.
Theorem 3.3. Let $r<\frac{\beta_{2}}{\beta_{1}}$ and θ be nonnegative real numbers and let $f: X \rightarrow Y$ be a mapping satisfying (3.4). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{2^{\beta_{2}}-2^{\beta_{1} r}}\|x\|^{r} \tag{3.10}
\end{equation*}
$$

for all $x \in X$.

Proof. It follows from (3.8) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{2}{2^{\beta_{2}}} \theta\|x\|^{r}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| & \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \leq \frac{2}{2^{\beta_{2}}} \sum_{j=l}^{m-1} \frac{2^{\beta_{1} r j}}{2^{\beta_{2} j}} \theta\|x\|^{r} \tag{3.11}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.11) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.11), we get (3.10).

The rest of the proof is similar to the proof of Theorem 2.2.
Remark 3.4. If ρ is a real number such that $-\frac{1}{2}<\rho<\frac{1}{2}$ and Y is a β-homogeneous real F-space, then all the assertions in this section remain valid.

Acknowledgments

This work was supported by the Seoul Science High School $R \& E$ Program in 2016.

References

1. M. Adam: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 4 (2011), 50-59.
2. T. Aoki: On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
3. L. Cădariu, L. Găvruta \& P. Găvruta: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67.
4. A. Chahbi \& N. Bounader: On the generalized stability of d'Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.
5. P.W. Cholewa. Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.
6. G. Z. Eskandani \& P. Gǎvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465.
7. P. Gǎvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
8. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
9. C. Park: Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl. 5 (2012), 28-36.
10. \qquad : Additive ρ-functional inequalities and equations. J. Math. Inequal. 9 (2015), 17-26.
11. \qquad : Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 9 (2015), 397-407.
12. C. Park, K. Ghasemi, S.G. Ghaleh \& S. Jang: Approximate n-Jordan *-homomorphisms in C^{*}-algebras. J. Comput. Anal. Appl. 15 (2013), 365-368.
13. C. Park, A. Najati \& S. Jang: Fixed points and fuzzy stability of an additive-quadratic functional equation. J. Comput. Anal. Appl. 15 (2013), 452-462.
14. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
15. K. Ravi, E. Thandapani \& B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27.
16. S. Rolewicz: Metric Linear Spaces. PWN-Polish Scientific Publishers, Warsaw, 1972.
17. S. Schin, D. Ki, J. Chang \& M. Kim: Random stability of quadratic functional equations: a fixed point approach. J. Nonlinear Sci. Appl. 4 (2011), 37-49.
18. S. Shagholi, M. Bavand Savadkouhi \& M. Eshaghi Gordji: Nearly ternary cubic homomorphism in ternary Fréchet algebras, J. Comput. Anal. Appl. 13 (2011), 1106-1114.
19. S. Shagholi, M. Eshaghi Gordji \& M. Bavand Savadkouhi: Stability of ternary quadratic derivation on ternary Banach algebras. J. Comput. Anal. Appl. 13 (2011), 1097-1105.
20. D. Shin, C. Park \& Sh. Farhadabadi: On the superstability of ternary Jordan C^{*} homomorphisms. J. Comput. Anal. Appl. 16 (2014), 964-973.
21. \qquad : Stability and superstability of J^{*}-homomorphisms and J^{*}-derivations for a generalized Cauchy-Jensen equation. J. Comput. Anal. Appl. 17 (2014), 125-134.
22. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
23. S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
24. C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6 (2013), 51-59.
25. S. Zolfaghari: Approximation of mixed type functional equations in p-Banach spaces.
J. Nonlinear Sci. Appl. 3 (2010), 110-122.
${ }^{\text {a }}$ Mathematics Branch, Seoul Science High School, Seoul 03066, Republic of Korea Email address: harinboy@naver.com
${ }^{\text {b }}$ Mathematics Branch, Seoul Science High School, Seoul 03066, Republic of Korea Email address: ckwodud99@naver.com
${ }^{c}$ Mathematics Branch, Seoul Science High School, Seoul 03066, Republic of Korea Email address: whalsdn9903@naver.com
${ }^{d}$ Mathematics Branch, Seoul Science High School, Seoul 03066, Republic of Korea Email address: m_james_kwon@naver.com

[^0]: Received by the editors August 02, 2016. Accepted August 03, 2016
 2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52, 39B82.
 Key words and phrases. Hyers-Ulam stability, β-homogeneous F-space, additive ρ-functional inequality.

 * Corresponding author.

