JORDAN *-HOMOMORPHISMS BETWEEN UNITAL C^{*}-ALGEBRAS

Madjid Eshaghi Gordji, Norooz Ghobadipour, and Choonkil Park

Abstract. In this paper, we prove the superstability and the generalized Hyers-Ulam stability of Jordan *-homomorphisms between unital C^{*} algebras associated with the following functional equation

$$
f\left(\frac{-x+y}{3}\right)+f\left(\frac{x-3 z}{3}\right)+f\left(\frac{3 x-y+3 z}{3}\right)=f(x)
$$

Moreover, we investigate Jordan $*$-homomorphisms between unital C^{*} algebras associated with the following functional inequality

$$
\left\|f\left(\frac{-x+y}{3}\right)+f\left(\frac{x-3 z}{3}\right)+f\left(\frac{3 x-y+3 z}{3}\right)\right\| \leq\|f(x)\| .
$$

1. Introduction

The stability of functional equations was first introduced by Ulam [33] in 1940. More precisely, he proposed the following problem:

Given a group G_{1}, a metric group $\left(G_{2}, d\right)$ and a positive number ϵ, does there exist a $\delta>0$ such that if a function $f: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(f(x y), f(x) f(y))<\delta$ for all $x, y \in G 1$, then there exists a homomorphism $T: G_{1} \rightarrow G_{2}$ such that $d(f(x), T(x))<\epsilon$ for all $x \in G_{1}$?

As mentioned above, when this problem has a solution, we say that the homomorphisms from G_{1} to G_{2} are stable. In 1941, Hyers [7] gave a partial solution of Ulam's problem for the case of approximate additive mappings under the assumption that G_{1} and G_{2} are Banach spaces. In 1978, Th. M. Rassias [27] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. This phenomenon of stability that was introduced by Th. M. Rassias [27] is called generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability.

[^0]Theorem 1.1. Let $f: E \longrightarrow E^{\prime}$ be a mapping from a norm vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \longrightarrow E^{\prime}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$, then the inequality (1.1) holds for all $x, y \neq 0$, and (1.2) for $x \neq 0$. Also, if the function $t \mapsto f(t x)$ from \mathbb{R} into E^{\prime} is continuous for each fixed $x \in E$, then T is \mathbb{R}-linear.

Recently, C. Park and W. Park [26] applied the Jun and Lee's result to the Jensen's equation in Banach modules over a \mathbb{C}^{*}-algebra. B. E. Johnson [15, Theorem 7.2] also investigated almost algebra $*$-homomorphisms between Banach $*$-algebras: Suppose that \mathcal{U} and B are Banach $*$-algebras which satisfy the conditions of [15, Theorem 3.1]. Then for each positive ϵ and K there is a positive δ such that if $T \in L(\mathcal{U}, B)$ with $\|T\|<K,\left\|T^{\vee}\right\|<\delta$ and $\| T\left(x^{*}\right)^{*}-$ $T(x)\|\leq \delta\| x \|$, then there is a $*$-homomorphism $T^{\prime}: \mathcal{U} \rightarrow B$ with $\left\|T^{\prime}-T\right\|<\epsilon$. Here $L(\mathcal{U}, B)$ is the space of bounded linear maps from \mathcal{U} into B, and $T^{\vee}(x, y)=$ $T(x y)-T(x) T(y)$. See [15] for details.

Throughout this paper, let A be a unital \mathbb{C}^{*}-algebra with norm $\|\cdot\|$ and unit e, and B a unital \mathbb{C}^{*}-algebra with norm $\|\cdot\|$. Let $\mathcal{U}(A)$ be the set of unitary elements in $A, A_{s a}=\left\{x \in A \mid x=x^{*}\right\}$, and $I_{1}\left(A_{s a}\right)=\left\{v \in A_{s a} \mid\|v\|=\right.$ $1, v$ is invertible $\}$. During the last decades several stability problems of functional equations have been investigated by many mathematicians. A large list of references concerning the stability of functional equations can be found in [1]-[14], [18, 21, 30, 31, 32, 34].

Definition 1.2. Let A, B be two C^{*}-algebras. A \mathbb{C}-linear mapping $f: A \rightarrow B$ is called a Jordan $*$-homomorphism if

$$
\left\{\begin{array}{l}
f\left(a^{2}\right)=f(a)^{2} \\
f\left(a^{*}\right)=f(a)^{*}
\end{array}\right.
$$

for all $a \in A$.
C. Park [24] introduced and investigated Jordan *-derivations between unital C^{*}-algebras associated with the following functional inequality

$$
\|f(a)+f(b)+k f(c)\| \leq\left\|k f\left(\frac{a+b}{k}+c\right)\right\|
$$

for some integer k greater than 1 and proved the generalized Hyers-Ulam stability of Jordan $*$-derivations between unital C^{*}-algebras associated with the following functional equation

$$
f\left(\frac{a+b}{k}+c\right)=\frac{f(a)+f(b)}{k}+f(c)
$$

for some integer k greater than 1 (see also [23, 19, 17, 20, 25]).
In this paper, we investigate Jordan $*$-homomorphisms between unital C^{*} algebras associated with the following functional inequality

$$
\left\|f\left(\frac{b-a}{3}\right)+f\left(\frac{a-3 c}{3}\right)+f\left(\frac{3 a+3 c-b}{3}\right)\right\| \leq\|f(a)\| \text {. }
$$

We moreover prove the generalized Hyers-Ulam stability of Jordan $*$-homomorphisms between unital C^{*}-algebras associated with the following functional equation

$$
f\left(\frac{b-a}{3}\right)+f\left(\frac{a-3 c}{3}\right)+f\left(\frac{3 a+3 c-b}{3}\right)=f(a)
$$

2. Jordan *-homomorphisms

In this section, we investigate Jordan $*$-homomorphisms between unital C^{*} algebras.

Lemma 2.1. Let $f: A \rightarrow B$ be a mapping such that

$$
\begin{equation*}
\left\|f\left(\frac{b-a}{3}\right)+f\left(\frac{a-3 c}{3}\right)+f\left(\frac{3 a+3 c-b}{3}\right)\right\|_{B} \leq\|f(a)\|_{B} \tag{2.1}
\end{equation*}
$$

for all $a, b, c \in A$. Then f is additive.
Proof. Letting $a=b=c=0$ in (2.1), we get

$$
\|3 f(0)\|_{B} \leq\|f(0)\|_{B} .
$$

So $f(0)=0$. Letting $a=b=0$ in (2.1), we get

$$
\|f(-c)+f(c)\|_{B} \leq\|f(0)\|_{B}=0
$$

for all $c \in A$. Hence $f(-c)=-f(c)$ for all $c \in A$. Letting $a=0$ and $b=6 c$ in (2.1), we get

$$
\|f(2 c)-2 f(c)\|_{B} \leq\|f(0)\|_{B}=0
$$

for all $c \in A$. Hence

$$
f(2 c)=2 f(c)
$$

for all $c \in A$. Letting $a=0$ and $b=9 c$ in (2.1), we get

$$
\|f(3 c)-f(c)-2 f(c)\|_{B} \leq\|f(0)\|_{B}=0
$$

for all $c \in A$. Hence

$$
f(3 c)=3 f(c)
$$

for all $c \in A$. Letting $a=0$ in (2.1), we get

$$
\left\|f\left(\frac{b}{3}\right)+f(-c)+f\left(c-\frac{b}{3}\right)\right\|_{B} \leq\|f(0)\|_{B}=0
$$

for all $a, b, c \in A$. So

$$
f\left(\frac{b}{3}\right)+f(-c)+f\left(c-\frac{b}{3}\right)=0
$$

for all $a, b, c \in A$. Let $t_{1}=c-\frac{b}{3}$ and $t_{2}=\frac{b}{3}$ in the last equation, we get

$$
f\left(t_{2}\right)-f\left(t_{1}+t_{2}\right)+f\left(t_{1}\right)=0
$$

for all $t_{1}, t_{2} \in A$. This means that f is additive.
Now we prove the superstability problem for Jordan $*$-homomorphisms as follows.

Theorem 2.2. Let $p<1$ and θ be nonnegative real numbers, and let $f: A \rightarrow B$ be a mapping satisfying $f(0)=0, f\left(3^{n} u x\right)=f\left(3^{n} u\right) f(x)$ for all $u \in \mathcal{U}(A)$ and all $x \in A$ and

$$
\begin{equation*}
\left\|f\left(\frac{b-a}{3}\right)+f\left(\frac{a-3 \mu c}{3}\right)+\mu f\left(\frac{3 a+3 c-b}{3}\right)\right\|_{B} \leq\|f(a)\|_{B} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f\left(3^{n} u^{*}\right)-f\left(3^{n} u\right)^{*}\right\|_{B} \leq 2 \theta 3^{n p} \tag{2.3}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C} ;|\lambda|=1\}$, all $u \in \mathcal{U}(A), n=0,1,2, \ldots$ and all $a, b, c \in A$. Then the mapping $f: A \rightarrow B$ is a Jordan $*$-homomorphism.

Proof. Let $\mu=1$ in (2.2). By Lemma 2.1, the mapping $f: A \rightarrow B$ is additive. Letting $a=b=0$ in (2.2), we get

$$
\|f(-\mu c)+\mu f(c)\|_{B} \leq\|f(0)\|_{B}=0
$$

for all $c \in A$ and all $\mu \in \mathbb{T}^{1}$. So

$$
-f(\mu c)+\mu f(c)=f(-\mu c)+\mu f(c)=0
$$

for all $c \in A$ and all $\mu \in \mathbb{T}^{1}$. Hence $f(\mu c)=\mu f(c)$ for all $c \in A$ and all $\mu \in \mathbb{T}^{1}$. By Theorem 2.1 of [22], the mapping $f: A \rightarrow B$ is \mathbb{C}-linear. By (2.3), we get

$$
f\left(u^{*}\right)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} u^{*}\right)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} u\right)^{*}=\left(\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} u\right)\right)^{*}=f(u)^{*}
$$

for all $u \in \mathcal{U}(A)$. Since f is \mathbb{C}-linear and each $x \in A$ is a finite linear combination of unitary elements (see [16, Theorem 4.1.7], i.e., $x=\sum_{i=1}^{m} \lambda_{i} u_{i}\left(\lambda_{i} \in \mathbb{C}, u_{i} \in\right.$ $\mathcal{U}(A))$,

$$
\begin{aligned}
f\left(x^{*}\right) & =f\left(\sum_{i=1}^{m} \bar{\lambda}_{i} u_{i}^{*}\right)=\sum_{i=1}^{m} \bar{\lambda}_{i} f\left(u_{i}{ }^{*}\right)=\sum_{i=1}^{m} \bar{\lambda}_{i} f\left(u_{i}\right)^{*} \\
& =\sum_{i=1}^{m} \lambda_{i} f\left(u_{i}\right)^{*}=f\left(\sum_{i=1}^{m} \lambda_{i} u_{i}\right)^{*}=f(x)^{*}
\end{aligned}
$$

for all $x \in A$. Since $f\left(3^{n} u x\right)=f\left(3^{n} u\right) f(x)$ for all $u \in \mathcal{U}(A), x \in A$ and all $n=0,1,2, \ldots$,

$$
f(u x)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} u x\right)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} u\right) f(x)=f(u) f(x)
$$

for all $u \in \mathcal{U}(A), x \in A$. Since f is \mathbb{C}-linear and each $x \in A$ is a finite linear combination of unitary elements, i.e., $x=\sum_{i=1}^{m} \lambda_{i} u_{i}\left(\lambda_{i} \in \mathbb{C}, u_{i} \in \mathcal{U}(A)\right)$,

$$
\begin{align*}
f(x y) & =f\left(\sum_{i=1}^{m} \lambda_{i} u_{i} y\right)=\sum_{i=1}^{m} \lambda_{i} f\left(u_{i} y\right)=\sum_{i=1}^{m} \lambda_{i} f\left(u_{i}\right) f(y) \tag{2.4}\\
& =f\left(\sum_{i=1}^{m} \lambda_{i} u_{i}\right) f(y)=f(x) f(y)
\end{align*}
$$

for all $x, y \in A$. Replacing y by x in (2.4), we get $f\left(x^{2}\right)=f(x)^{2}$ for all $x \in A$. Therefore, the mapping $f: A \rightarrow B$ is a Jordan $*$-homomorphism, as desired.

Theorem 2.3. Let $p>1$ and θ be a nonnegative real number, and let $f: A \rightarrow$ B be a mapping satisfying (2.2) and (2.3). Then the mapping $f: A \rightarrow B$ is a Jordan *-homomorphism.

Proof. The proof is similar to the proof of Theorem 2.2.
We prove the generalized Hyers-Ulam stability of Jordan *-homomorphisms between unital C^{*}-algebras.
Theorem 2.4. Suppose that $f: A \rightarrow B$ is a mapping for which there exists a function $\varphi: A \times A \times A \rightarrow \mathbb{R}^{+}$such that

$$
\begin{align*}
& \left\|f\left(\frac{\mu b-a}{3}\right)+f\left(\frac{a-3 c}{3}\right)+\mu f\left(\frac{3 a-b}{3}+c\right)-f(a)+f\left(c^{2}\right)-f(c)^{2}\right\|_{B} \tag{2.8}\\
& \leq \varphi(a, b, c)
\end{align*}
$$

for all $a, b, c \in A$ and all $\mu \in \mathbb{T}^{1}$. Then there exists a unique Jordan *homomorphism $h: A \rightarrow B$ such that

$$
\begin{equation*}
\|h(a)-f(a)\|_{B} \leq \sum_{i=0}^{\infty} 3^{i} \varphi\left(\frac{a}{3^{i}}, \frac{2 a}{3^{i}}, 0\right) \tag{2.9}
\end{equation*}
$$

for all $a \in A$.
Proof. Letting $\mu=1, b=2 a$ and $c=0$ in (2.8), we get

$$
\left\|3 f\left(\frac{a}{3}\right)-f(a)\right\|_{B} \leq \varphi(a, 2 a, 0)
$$

for all $a \in A$. Using the induction method, we have

$$
\begin{equation*}
\left\|3^{n} f\left(\frac{a}{3^{n}}\right)-f(a)\right\| \leq \sum_{i=0}^{n-1} 3^{i} \varphi\left(\frac{a}{3^{i}}, \frac{2 a}{3^{i}}, 0\right) \tag{2.10}
\end{equation*}
$$

for all $a \in A$. In order to show the functions $h_{n}(a)=3^{n} f\left(\frac{a}{3^{n}}\right)$ form a convergent sequence, we use the Cauchy convergence criterion. Indeed, replace a by $\frac{a}{3^{m}}$ and multiply by 3^{m} in (2.10), where m is an arbitrary positive integer. We find that

$$
\begin{equation*}
\left\|3^{m+n} f\left(\frac{a}{3^{m+n}}\right)-3^{m} f\left(\frac{a}{3^{m}}\right)\right\| \leq \sum_{i=m}^{m+n-1} 3^{i} \varphi\left(\frac{a}{3^{i}}, \frac{2 a}{3^{i}}, 0\right) \tag{2.11}
\end{equation*}
$$

for all positive integers. Hence by the Cauchy criterion the limit $h(a)=$ $\lim _{n \rightarrow \infty} h_{n}(a)$ exists for each $a \in A$. By taking the limit as $n \rightarrow \infty$ in (2.10) we see that

$$
\|h(a)-f(a)\| \leq \sum_{i=0}^{\infty} 3^{i} \varphi\left(\frac{a}{3^{i}}, \frac{2 a}{3^{i}}, 0\right)
$$

and (2.9) holds for all $a \in A$. Let $\mu=1$ and $c=0$ in (2.8), we get

$$
\begin{equation*}
\left\|f\left(\frac{b-a}{3}\right)+f\left(\frac{a}{3}\right)+f\left(\frac{3 a-b}{3}\right)-f(a)\right\|_{B} \leq \varphi(a, b, 0) \tag{2.12}
\end{equation*}
$$

for all $a, b, c \in A$. Multiplying both sides (2.12) by 3^{n} and Replacing a, b by $\frac{a}{3^{n}}, \frac{b}{3^{n}}$, respectively, we get

$$
\begin{align*}
& \left\|3^{n} f\left(\frac{b-a}{3^{n+1}}\right)+3^{n} f\left(\frac{a}{3^{n+1}}\right)+3^{n} f\left(\frac{3 a-b}{3^{n+1}}\right)-3^{n} f\left(\frac{a}{3^{n}}\right)\right\|_{B} \tag{2.13}\\
\leq & 3^{n} \varphi\left(\frac{a}{3^{n}}, \frac{b}{3^{n}}, 0\right)
\end{align*}
$$

for all $a, b, c \in A$. Taking the limit as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
h\left(\frac{b-a}{3}\right)+h\left(\frac{a}{3}\right)+h\left(\frac{3 a-b}{3}\right)-h(a)=0 \tag{2.14}
\end{equation*}
$$

for all $a, b, c \in A$. Putting $b=2 a$ in (2.14), we get $3 h\left(\frac{a}{3}\right)=h(a)$ for all $a \in A$. Replacing a by $2 a$ in (2.14), we get

$$
\begin{equation*}
h(b-2 a)+h(6 a-b)=2 h(2 a) \tag{2.15}
\end{equation*}
$$

for all $a, b \in A$. Letting $b=2 a$ in (2.15), we get $h(4 a)=2 h(2 a)$ for all $a \in A$. So $h(2 a)=2 h(a)$ for all $a \in A$. Letting $3 a-b=s$ and $b-a=t$ in (2.14), we get

$$
h\left(\frac{t}{3}\right)+h\left(\frac{s+t}{6}\right)+h\left(\frac{t}{3}\right)=h\left(\frac{s+t}{2}\right)
$$

for all $s, t \in A$. Hence $h(s)+h(t)=h(s+t)$ for all $s, t \in A$. So, h is additive.
Letting $a=c=0$ in (2.12) and using the above method, we have $h(\mu b)=\mu h(b)$
for all $b \in A$ and all $\mu \in \mathbb{T}$. Hence by Theorem 2.1 of [22], the mapping $f: A \rightarrow B$ is \mathbb{C}-linear.

Now, let $h^{\prime}: A \rightarrow B$ be another \mathbb{C}-linear mapping satisfying (2.9). Then we have

$$
\begin{aligned}
\left\|h(a)-h^{\prime}(a)\right\|_{B} & =3^{n}\left\|h\left(\frac{a}{3^{n}}\right)-h^{\prime}\left(\frac{a}{3^{n}}\right)\right\|_{B} \\
& \leq 3^{n}\left[\left\|h\left(\frac{a}{3^{n}}\right)-f\left(\frac{a}{3^{n}}\right)\right\|_{B}+\left\|h^{\prime}\left(\frac{a}{3^{n}}\right)-f\left(\frac{a}{3^{n}}\right)\right\|_{B}\right] \\
& \leq 2 \sum_{i=n}^{\infty} 3^{i} \varphi\left(\frac{a}{3^{i}}, \frac{2 a}{3^{i}}, 0\right) \\
& =0
\end{aligned}
$$

for all $a \in A$. By (2.6), (2.7), (2.8) and similar to the proof of Theorem 2.2, the mapping $h: A \rightarrow B$ is a Jordan $*$-homomorphism.
Corollary 2.5. Suppose that $f: A \rightarrow B$ is a mapping with $f(0)=0$ for which there exist constant $\theta \geq 0$ and $p_{1}, p_{2}, p_{3}>1$ such that

$$
\begin{aligned}
& \left\|f\left(\frac{\mu b-a}{3}\right)+f\left(\frac{a-3 c}{3}\right)+\mu f\left(\frac{3 a-b}{3}+c\right)-f(a)+f\left(c^{2}\right)-f(c)^{2}\right\|_{B} \\
& \leq \theta\left(\|a\|^{p_{1}}+\|b\|^{p_{2}}+\|c\|^{p_{3}}\right) \\
& \left\|f\left(3^{n} u^{*}\right)-f\left(3^{n} u\right)^{*}\right\|_{B} \leq \theta\left(3^{n p_{1}}+3^{n p_{2}}+3^{n p_{3}}\right)
\end{aligned}
$$

for all $a, b, c \in A$ and all $\mu \in \mathbb{T}$. Then there exists a unique Jordan $*$-homomorphism $h: A \rightarrow B$ such that

$$
\|f(a)-h(a)\|_{B} \leq \frac{\theta\|a\|^{p_{1}}}{1-3^{\left(1-p_{1}\right)}}+\frac{\theta 2^{p_{2}}\|a\|^{p_{2}}}{1-3^{\left(1-p_{2}\right)}}
$$

for all $a \in A$.
Proof. Letting $\varphi(a, b, c):=\theta\left(\|a\|^{p_{1}}+\|b\|^{p_{2}}+\|c\|^{p_{3}}\right)$ in Theorem 2.4, we obtain the result.

Theorem 2.6. Suppose that $f: A \rightarrow B$ is a mapping with $f(0)=0$ for which there exists a function $\varphi: A \times A \times A \rightarrow B$ satisfying (2.7), (2.8) and (2.8) such that

$$
\begin{align*}
& \sum_{i=1}^{\infty} 3^{-i} \varphi\left(3^{i} a, 3^{i} b, 3^{i} c\right)<\infty \tag{2.16}\\
& \lim _{n \rightarrow \infty} 3^{-2 n} \varphi\left(3^{i} a, 3^{i} b, 3^{i} c\right)=0 \tag{2.17}
\end{align*}
$$

for all $a, b, c \in A$. Then there exists a unique Jordan $*$-homomorphism $h: A \rightarrow$ B such that

$$
\begin{equation*}
\|h(a)-f(a)\|_{B} \leq \sum_{i=1}^{\infty} 3^{-i} \varphi\left(3^{i} a, 3^{i} 2 a, 0\right) \tag{2.18}
\end{equation*}
$$

for all $a \in A$.

Proof. Letting $\mu=1, b=2 a$ and $c=0$ in (2.8), we get

$$
\begin{equation*}
\left\|3 f\left(\frac{a}{3}\right)-f(a)\right\|_{B} \leq \varphi(a, 2 a, 0) \tag{2.19}
\end{equation*}
$$

for all $a \in A$. Replacing a by $3 a$ in (2.19), we get

$$
\left\|3^{-1} f(3 a)-f(a)\right\|_{B} \leq 3^{-1} \varphi(3 a, 2(3 a), 0)
$$

for all $a \in A$. On can apply the induction method to prove that

$$
\begin{equation*}
\left\|3^{-n} f\left(3^{n} a\right)-f(a)\right\|_{B} \leq \sum_{i=1}^{n} 3^{-i} \varphi\left(3^{i} a, 2\left(3^{i} a\right), 0\right) \tag{2.20}
\end{equation*}
$$

for all $a \in A$. In order to show the functions $h_{n}(a)=3^{-n} f\left(3^{n} a\right)$ form a convergent sequence, we use the Cauchy convergence criterion. Indeed, replace a by $3^{m} a$ and multiply by 3^{-m} in (2.20), where m is an arbitrary positive integer. We find that

$$
\begin{equation*}
\left\|3^{-(m+n)} f\left(3^{m+n} a\right)-3^{-m} f\left(3^{m} a\right)\right\| \leq \sum_{i=m+1}^{m+n} 3^{-i} \varphi\left(3^{i} a, 2\left(3^{i} a\right), 0\right) \tag{2.21}
\end{equation*}
$$

for all positive integers. Hence by the Cauchy criterion the limit $h(a)=$ $\lim _{n \rightarrow \infty} h_{n}(a)$ exists for each $a \in A$. By taking the limit as $n \rightarrow \infty$ in (2.20) we see that

$$
\|h(a)-f(a)\| \leq \sum_{i=1}^{\infty} 3^{-i} \varphi\left(3^{i} a, 2\left(3^{i} a\right), 0\right)
$$

and (2.18) holds for all $a \in A$.
The rest of the proof is similar to the proof of Theorem 2.4.
Corollary 2.7. Suppose that $f: A \rightarrow B$ is a mapping with $f(0)=0$ for which there exist constant $\theta \geq 0$ and $p_{1}, p_{2}, p_{3}<1$ such that

$$
\begin{aligned}
& \quad\left\|f\left(\frac{\mu b-a}{3}\right)+f\left(\frac{a-3 c}{3}\right)+\mu f\left(\frac{3 a-b}{3}+c\right)-f(a)+f\left(c^{2}\right)-f(c)^{2}\right\|_{B} \\
& \leq \theta\left(\|a\|^{p_{1}}+\|b\|^{p_{2}}+\|c\|^{p_{3}}\right) \\
& \left\|f\left(3^{n} u^{*}\right)-f\left(3^{n} u\right)^{*}\right\|_{B} \leq \theta\left(3^{n p_{1}}+3^{n p_{2}}+3^{n p_{3}}\right)
\end{aligned}
$$

for all $a, b, c \in A$ and all $\mu \in \mathbb{T}$. Then there exists a unique Jordan *-homomorphism $h: A \rightarrow B$ such that

$$
\|f(a)-h(a)\|_{B} \leq \frac{\theta\|a\|^{p_{1}}}{3^{\left(1-p_{1}\right)}-1}+\frac{\theta 2^{p_{2}}\|a\|^{p_{2}}}{3^{\left(1-p_{2}\right)}-1}
$$

for all $a \in A$.
Proof. Letting $\varphi(a, b, c):=\theta\left(\|a\|^{p_{1}}+\|b\|^{p_{2}}+\|c\|^{p_{3}}\right)$ in Theorem 2.7, we obtain the result.

References

[1] B. Baak, D. Boo, and Th. M. Rassias, Generalized additive mapping in Banach modules and isomorphisms between C^{*}-algebras, J. Math. Anal. Appl. 314 (2006), no. 1, 150161.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86.
[3] J. Y. Chung, Distributional methods for a class of functional equations and their stabilities, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 11, 2017-2026.
[4] M. Eshaghi Gordji, Stability of an additive-quadratic functional equation of two variables in F-spaces, J. Nonlinear Sci. Appl. 2 (2009), no. 4, 251-259.
[5] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[6] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
[8] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[9] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153.
[10] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory 72 (1993), no. 2, 131-137.
[11] , Stability of ψ-additive mappings: Applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219-228.
[12] K.-W. Jun and H.-M. Kim, Stability problem for Jensen type functional equations of cubic mappings, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1781-1788.
[13] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315.
[14] S. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3137-3143.
[15] B. E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. (2) $\mathbf{3 7}$ (1988), no. 2, 294-316.
[16] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I, Elementary Theory, Academic Press, New York, 1983.
[17] B. D. Kim, On the derivations of semiprime rings and noncommutative Banach algebras, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 1, 21-28.
[18] , On Hyers-Ulam-Rassias stability of functional equations, Acta Mathematica Sinica 24 (2008), no. 3, 353-372.
[19] H.-M. Kim, Stability for generalized Jensen functional equations and isomorphisms between C^{*}-algebras, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 1-14.
[20] M. S. Moslehian, Almost Derivations on $C^{*}-$ Ternary Rings, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 135-142.
[21] A. Najati and C. Park, Stability of a generalized Euler-Lagrange type additive mapping and homomorphisms in C^{*}-algebras, J. Nonlinear Sci. Appl. 3 (2010), no. 2, 123-143.
[22] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 1, 79-97.
[23] , Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between C^{*}-algebras, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 4, 619-631.
[24] C. Park, J. An, and J. Cui, Jordan *-derivations on C^{*}-algebras and JC*-algebras, Abstact and Applied Analasis (in press).
[25] C. Park and J. L. Cui, Approximately linear mappings in Banach modules over a C^{*} algebra, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 11, 1919-1936.
[26] C. Park and W. Park, On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), no. 4, 523-531.
[27] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[28] _ Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153.
[29] _, On the stability of functional equations and a problem of Ulam, Acta Math. Appl. 62 (2000), no. 1, 23-130.
[30] , On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284.
[31] P. K. Sahoo, A generalized cubic functional equation, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 5, 1159-1166.
[32] S. Shakeri, Intuitionistic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appl. 2 (2009), no. 2, 105-112.
[33] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York, 1940.
[34] D. H. Zhang and H. X. Cao, Stability of functional equations in several variables, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 2, 321-326.

Madjid Eshaghi Gordji
Department of Mathematics
Semnan University
P. O. Box 35195-363, Semnan, Iran

E-mail address: madjid.eshaghi@gmail.com
Norooz Ghobadipour
Department of Mathematics
Semnan University
P. O. Box 35195-363, Semnan, Iran

E-mail address: ghobadipour.n@gmail.com
Choonkil Park
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail address: baak@hanyang.ac.kr

[^0]: Received September 2, 2010.
 2010 Mathematics Subject Classification. Primary 17C65, 39B82, 46L05, 47Jxx, 47B48, 39B72.

 Key words and phrases. Jordan $*$-homomorphism, C^{*}-algebra, generalized Hyers-Ulam stability, functional equation and inequality.

