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JORDAN ∗-HOMOMORPHISMS BETWEEN UNITAL

C∗-ALGEBRAS

Madjid Eshaghi Gordji, Norooz Ghobadipour, and Choonkil Park

Abstract. In this paper, we prove the superstability and the generalized
Hyers-Ulam stability of Jordan ∗-homomorphisms between unital C∗-
algebras associated with the following functional equation
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Moreover, we investigate Jordan ∗-homomorphisms between unital C∗-
algebras associated with the following functional inequality∥∥∥∥f (−x+ y

3

)
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3x− y + 3z
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)∥∥∥∥ ≤ ∥f(x)∥.

1. Introduction

The stability of functional equations was first introduced by Ulam [33] in
1940. More precisely, he proposed the following problem:

Given a group G1, a metric group (G2, d) and a positive number ϵ, does
there exist a δ > 0 such that if a function f : G1 −→ G2 satisfies the inequality
d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
T : G1 → G2 such that d(f(x), T (x)) < ϵ for all x ∈ G1?

As mentioned above, when this problem has a solution, we say that the
homomorphisms from G1 to G2 are stable. In 1941, Hyers [7] gave a partial so-
lution of Ulam’s problem for the case of approximate additive mappings under
the assumption that G1 and G2 are Banach spaces. In 1978, Th. M. Ras-
sias [27] generalized the theorem of Hyers by considering the stability problem
with unbounded Cauchy differences. This phenomenon of stability that was
introduced by Th. M. Rassias [27] is called generalized Hyers-Ulam stability or
Hyers-Ulam-Rassias stability.
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Theorem 1.1. Let f : E −→ E′ be a mapping from a norm vector space E
into a Banach space E′ subject to the inequality

(1.1) ∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p)
for all x, y ∈ E, where ϵ and p are constants with ϵ > 0 and p < 1. Then there
exists a unique additive mapping T : E −→ E′ such that

(1.2) ∥f(x)− T (x)∥ ≤ 2ϵ

2− 2p
∥x∥p

for all x ∈ E. If p < 0, then the inequality (1.1) holds for all x, y ̸= 0, and
(1.2) for x ̸= 0. Also, if the function t 7→ f(tx) from R into E′ is continuous
for each fixed x ∈ E, then T is R-linear.

Recently, C. Park and W. Park [26] applied the Jun and Lee’s result to
the Jensen’s equation in Banach modules over a C∗-algebra. B. E. Johnson
[15, Theorem 7.2] also investigated almost algebra ∗-homomorphisms between
Banach ∗-algebras: Suppose that U and B are Banach ∗-algebras which satisfy
the conditions of [15, Theorem 3.1]. Then for each positive ϵ and K there is a
positive δ such that if T ∈ L(U , B) with ∥T∥ < K, ∥T∨∥ < δ and ∥T (x∗)∗ −
T (x)∥ ≤ δ∥x∥, then there is a ∗-homomorphism T ′ : U → B with ∥T ′−T∥ < ϵ.
Here L(U , B) is the space of bounded linear maps from U intoB, and T∨(x, y) =
T (xy)− T (x)T (y). See [15] for details.

Throughout this paper, let A be a unital C∗ -algebra with norm ∥ · ∥ and
unit e, and B a unital C∗-algebra with norm ∥ · ∥. Let U(A) be the set of uni-
tary elements in A, Asa = {x ∈ A|x = x∗}, and I1(Asa) = {v ∈ Asa| ∥v∥ =
1, v is invertible}. During the last decades several stability problems of func-
tional equations have been investigated by many mathematicians. A large list
of references concerning the stability of functional equations can be found in
[1]–[14], [18, 21, 30, 31, 32, 34].

Definition 1.2. Let A,B be two C∗-algebras. A C-linear mapping f : A → B
is called a Jordan ∗-homomorphism if{

f(a2) = f(a)2

f(a∗) = f(a)∗

for all a ∈ A.

C. Park [24] introduced and investigated Jordan ∗-derivations between unital
C∗-algebras associated with the following functional inequality

∥f(a) + f(b) + kf(c)∥ ≤
∥∥∥∥kf (a+ b

k
+ c

)∥∥∥∥
for some integer k greater than 1 and proved the generalized Hyers-Ulam sta-
bility of Jordan ∗-derivations between unital C∗-algebras associated with the
following functional equation

f

(
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k
+ f(c)
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for some integer k greater than 1 (see also [23, 19, 17, 20, 25]).
In this paper, we investigate Jordan ∗-homomorphisms between unital C∗-

algebras associated with the following functional inequality∥∥∥∥f (b− a

3

)
+ f

(
a− 3c

3

)
+ f

(
3a+ 3c− b

3

)∥∥∥∥ ≤ ∥f(a)∥.

We moreover prove the generalized Hyers-Ulam stability of Jordan ∗-homomor-
phisms between unital C∗-algebras associated with the following functional
equation

f

(
b− a

3

)
+ f

(
a− 3c

3

)
+ f

(
3a+ 3c− b

3

)
= f(a).

2. Jordan ∗-homomorphisms

In this section, we investigate Jordan ∗-homomorphisms between unital C∗-
algebras.

Lemma 2.1. Let f : A → B be a mapping such that

(2.1)

∥∥∥∥f (b− a

3

)
+ f

(
a− 3c

3

)
+ f

(
3a+ 3c− b

3

)∥∥∥∥
B

≤ ∥f(a)∥B

for all a, b, c ∈ A. Then f is additive.

Proof. Letting a = b = c = 0 in (2.1), we get

∥3f(0)∥B ≤ ∥f(0)∥B .
So f(0) = 0. Letting a = b = 0 in (2.1), we get

∥f(−c) + f(c)∥B ≤ ∥f(0)∥B = 0

for all c ∈ A. Hence f(−c) = −f(c) for all c ∈ A. Letting a = 0 and b = 6c in
(2.1), we get

∥f(2c)− 2f(c)∥B ≤ ∥f(0)∥B = 0

for all c ∈ A. Hence

f(2c) = 2f(c)

for all c ∈ A. Letting a = 0 and b = 9c in (2.1), we get

∥f(3c)− f(c)− 2f(c)∥B ≤ ∥f(0)∥B = 0

for all c ∈ A. Hence

f(3c) = 3f(c)

for all c ∈ A. Letting a = 0 in (2.1), we get

∥f( b
3
) + f(−c) + f(c− b

3
)∥B ≤ ∥f(0)∥B = 0

for all a, b, c ∈ A. So

f(
b

3
) + f(−c) + f(c− b

3
) = 0
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for all a, b, c ∈ A. Let t1 = c− b
3 and t2 = b

3 in the last equation, we get

f(t2)− f(t1 + t2) + f(t1) = 0

for all t1, t2 ∈ A. This means that f is additive. □

Now we prove the superstability problem for Jordan ∗-homomorphisms as
follows.

Theorem 2.2. Let p < 1 and θ be nonnegative real numbers, and let f : A → B
be a mapping satisfying f(0) = 0, f(3nux) = f(3nu)f(x) for all u ∈ U(A) and
all x ∈ A and

(2.2)

∥∥∥∥f (b− a

3

)
+ f

(
a− 3µc

3

)
+ µf

(
3a+ 3c− b

3

)∥∥∥∥
B

≤ ∥f(a)∥B ,

(2.3) ∥f(3nu∗)− f(3nu)∗∥B ≤ 2θ3np,

for all µ ∈ T1 := {λ ∈ C ; |λ| = 1}, all u ∈ U(A), n = 0, 1, 2, . . . and all
a, b, c ∈ A. Then the mapping f : A → B is a Jordan ∗-homomorphism.

Proof. Let µ = 1 in (2.2). By Lemma 2.1, the mapping f : A → B is additive.
Letting a = b = 0 in (2.2), we get

∥f(−µc) + µf(c)∥B ≤ ∥f(0)∥B = 0

for all c ∈ A and all µ ∈ T1. So

−f(µc) + µf(c) = f(−µc) + µf(c) = 0

for all c ∈ A and all µ ∈ T1. Hence f(µc) = µf(c) for all c ∈ A and all µ ∈ T1.
By Theorem 2.1 of [22], the mapping f : A → B is C-linear. By (2.3), we get

f(u∗) = lim
n→∞

1

3n
f(3nu∗) = lim

n→∞

1

3n
f(3nu)∗ =

(
lim
n→∞

1

3n
f(3nu)

)∗

= f(u)∗

for all u ∈ U(A). Since f is C-linear and each x ∈ A is a finite linear combination
of unitary elements (see [16, Theorem 4.1.7], i.e., x =

∑m
i=1 λiui (λi ∈ C, ui ∈

U(A)),

f(x∗) = f

(
m∑
i=1

λ̄iui
∗

)
=

m∑
i=1

λ̄if(ui
∗) =

m∑
i=1

λ̄if(ui)
∗

=
m∑
i=1

λif(ui)
∗ = f

(
m∑
i=1

λiui

)∗

= f(x)∗

for all x ∈ A. Since f(3nux) = f(3nu)f(x) for all u ∈ U(A), x ∈ A and all
n = 0, 1, 2, . . . ,

f(ux) = lim
n→∞

1

3n
f(3nux) = lim

n→∞

1

3n
f(3nu)f(x) = f(u)f(x)
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for all u ∈ U(A), x ∈ A. Since f is C-linear and each x ∈ A is a finite linear
combination of unitary elements, i.e., x =

∑m
i=1 λiui (λi ∈ C, ui ∈ U(A)),

(2.4)

f(xy) = f

(
m∑
i=1

λiuiy

)
=

m∑
i=1

λif(uiy) =
m∑
i=1

λif(ui)f(y)

= f

(
m∑
i=1

λiui

)
f(y) = f(x)f(y)

for all x, y ∈ A. Replacing y by x in (2.4), we get f(x2) = f(x)2 for all x ∈ A.
Therefore, the mapping f : A → B is a Jordan ∗-homomorphism, as desired.

□

Theorem 2.3. Let p > 1 and θ be a nonnegative real number, and let f : A →
B be a mapping satisfying (2.2) and (2.3). Then the mapping f : A → B is a
Jordan ∗-homomorphism.

Proof. The proof is similar to the proof of Theorem 2.2. □

We prove the generalized Hyers-Ulam stability of Jordan ∗-homomorphisms
between unital C∗-algebras.

Theorem 2.4. Suppose that f : A → B is a mapping for which there exists a
function φ : A×A×A → R+ such that

(2.5)

∞∑
i=0

3iφ

(
a

3i
,
b

3i
,
c

3i

)
< ∞,

(2.6) lim
n→∞

32nφ

(
a

3n
,
b

3n
,
c

3n

)
= 0,

(2.7) ∥f(3nu∗)− f(3nu)∗∥B ≤ φ(3nu, 3nu, 3nu),

(2.8)∥∥∥∥f (µb− a

3

)
+ f

(
a− 3c

3

)
+ µf

(
3a− b

3
+ c

)
− f(a) + f(c2)− f(c)2

∥∥∥∥
B

≤ φ(a, b, c)

for all a, b, c ∈ A and all µ ∈ T1. Then there exists a unique Jordan ∗-
homomorphism h : A → B such that

(2.9) ∥h(a)− f(a)∥B ≤
∞∑
i=0

3iφ

(
a

3i
,
2a

3i
, 0

)
for all a ∈ A.

Proof. Letting µ = 1, b = 2a and c = 0 in (2.8), we get∥∥∥3f (a
3

)
− f(a)

∥∥∥
B
≤ φ(a, 2a, 0)
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for all a ∈ A. Using the induction method, we have

(2.10)
∥∥∥3nf ( a

3n

)
− f(a)

∥∥∥ ≤
n−1∑
i=0

3iφ

(
a

3i
,
2a

3i
, 0

)
for all a ∈ A. In order to show the functions hn(a) = 3nf( a

3n ) form a convergent
sequence, we use the Cauchy convergence criterion. Indeed, replace a by a

3m

and multiply by 3m in (2.10), where m is an arbitrary positive integer. We find
that

(2.11)
∥∥∥3m+nf

( a

3m+n

)
− 3mf

( a

3m

)∥∥∥ ≤
m+n−1∑
i=m

3iφ

(
a

3i
,
2a

3i
, 0

)
for all positive integers. Hence by the Cauchy criterion the limit h(a) =
limn→∞ hn(a) exists for each a ∈ A. By taking the limit as n → ∞ in (2.10)
we see that

∥h(a)− f(a)∥ ≤
∞∑
i=0

3iφ

(
a

3i
,
2a

3i
, 0

)
and (2.9) holds for all a ∈ A. Let µ = 1 and c = 0 in (2.8), we get

(2.12)

∥∥∥∥f (b− a

3

)
+ f

(a
3

)
+ f

(
3a− b

3

)
− f(a)

∥∥∥∥
B

≤ φ(a, b, 0)

for all a, b, c ∈ A. Multiplying both sides (2.12) by 3n and Replacing a, b by
a
3n ,

b
3n , respectively, we get

(2.13)

∥∥∥∥3nf (b− a

3n+1

)
+ 3nf

( a

3n+1

)
+ 3nf

(
3a− b

3n+1

)
− 3nf

( a

3n

)∥∥∥∥
B

≤ 3nφ

(
a

3n
,
b

3n
, 0

)
for all a, b, c ∈ A. Taking the limit as n → ∞, we obtain

(2.14) h

(
b− a

3

)
+ h

(a
3

)
+ h

(
3a− b

3

)
− h(a) = 0

for all a, b, c ∈ A. Putting b = 2a in (2.14), we get 3h(a3 ) = h(a) for all a ∈ A.
Replacing a by 2a in (2.14), we get

(2.15) h(b− 2a) + h(6a− b) = 2h(2a)

for all a, b ∈ A. Letting b = 2a in (2.15), we get h(4a) = 2h(2a) for all a ∈ A.
So h(2a) = 2h(a) for all a ∈ A. Letting 3a− b = s and b− a = t in (2.14), we
get

h

(
t

3

)
+ h

(
s+ t

6

)
+ h

(
t

3

)
= h

(
s+ t

2

)
for all s, t ∈ A. Hence h(s) + h(t) = h(s + t) for all s, t ∈ A. So, h is additive.
Letting a = c = 0 in (2.12) and using the above method, we have h(µb) = µh(b)
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for all b ∈ A and all µ ∈ T. Hence by Theorem 2.1 of [22], the mapping
f : A → B is C-linear.

Now, let h
′
: A → B be another C-linear mapping satisfying (2.9). Then we

have

∥h(a)− h
′
(a)∥B = 3n

∥∥∥h( a

3n

)
− h

′
( a

3n

)∥∥∥
B

≤ 3n
[∥∥∥h( a

3n

)
− f

( a

3n

)∥∥∥
B
+
∥∥∥h′

( a

3n

)
− f

( a

3n

)∥∥∥
B

]
≤ 2

∞∑
i=n

3iφ

(
a

3i
,
2a

3i
, 0

)
= 0

for all a ∈ A. By (2.6), (2.7), (2.8) and similar to the proof of Theorem 2.2, the
mapping h : A → B is a Jordan ∗-homomorphism. □
Corollary 2.5. Suppose that f : A → B is a mapping with f(0) = 0 for which
there exist constant θ ≥ 0 and p1, p2, p3 > 1 such that∥∥∥∥f (µb− a

3

)
+ f

(
a− 3c

3

)
+ µf

(
3a− b

3
+ c

)
− f(a) + f(c2)− f(c)2

∥∥∥∥
B

≤ θ(∥a∥p1 + ∥b∥p2 + ∥c∥p3),

∥f(3nu∗)− f(3nu)∗∥B ≤ θ(3np1 + 3np2 + 3np3)

for all a, b, c ∈ A and all µ ∈ T. Then there exists a unique Jordan ∗-homomor-
phism h : A → B such that

∥f(a)− h(a)∥B ≤ θ∥a∥p1

1− 3(1−p1)
+

θ2p2∥a∥p2

1− 3(1−p2)

for all a ∈ A.

Proof. Letting φ(a, b, c) := θ(∥a∥p1 + ∥b∥p2 + ∥c∥p3) in Theorem 2.4, we obtain
the result. □
Theorem 2.6. Suppose that f : A → B is a mapping with f(0) = 0 for which
there exists a function φ : A×A×A → B satisfying (2.7), (2.8) and (2.8) such
that

(2.16)
∞∑
i=1

3−iφ(3ia, 3ib, 3ic) < ∞,

(2.17) lim
n→∞

3−2nφ(3ia, 3ib, 3ic) = 0

for all a, b, c ∈ A. Then there exists a unique Jordan ∗-homomorphism h : A →
B such that

(2.18) ∥h(a)− f(a)∥B ≤
∞∑
i=1

3−iφ(3ia, 3i2a, 0)

for all a ∈ A.
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Proof. Letting µ = 1, b = 2a and c = 0 in (2.8), we get

(2.19)
∥∥∥3f (a

3

)
− f(a)

∥∥∥
B
≤ φ(a, 2a, 0)

for all a ∈ A. Replacing a by 3a in (2.19), we get

∥3−1f(3a)− f(a)∥B ≤ 3−1φ(3a, 2(3a), 0)

for all a ∈ A. On can apply the induction method to prove that

(2.20) ∥3−nf(3na)− f(a)∥B ≤
n∑

i=1

3−iφ(3ia, 2(3ia), 0)

for all a ∈ A. In order to show the functions hn(a) = 3−nf(3na) form a
convergent sequence, we use the Cauchy convergence criterion. Indeed, replace
a by 3ma and multiply by 3−m in (2.20), where m is an arbitrary positive
integer. We find that

(2.21) ∥3−(m+n)f(3m+na)− 3−mf(3ma)∥ ≤
m+n∑

i=m+1

3−iφ(3ia, 2(3ia), 0)

for all positive integers. Hence by the Cauchy criterion the limit h(a) =
limn→∞ hn(a) exists for each a ∈ A. By taking the limit as n → ∞ in (2.20)
we see that

∥h(a)− f(a)∥ ≤
∞∑
i=1

3−iφ(3ia, 2(3ia), 0)

and (2.18) holds for all a ∈ A.
The rest of the proof is similar to the proof of Theorem 2.4. □

Corollary 2.7. Suppose that f : A → B is a mapping with f(0) = 0 for which
there exist constant θ ≥ 0 and p1, p2, p3 < 1 such that∥∥∥∥f (µb− a

3

)
+ f

(
a− 3c

3

)
+ µf

(
3a− b

3
+ c

)
− f(a) + f(c2)− f(c)2

∥∥∥∥
B

≤ θ(∥a∥p1 + ∥b∥p2 + ∥c∥p3),

∥f(3nu∗)− f(3nu)∗∥B ≤ θ(3np1 + 3np2 + 3np3)

for all a, b, c ∈ A and all µ ∈ T. Then there exists a unique Jordan ∗-homomor-
phism h : A → B such that

∥f(a)− h(a)∥B ≤ θ∥a∥p1

3(1−p1) − 1
+

θ2p2∥a∥p2

3(1−p2) − 1

for all a ∈ A.

Proof. Letting φ(a, b, c) := θ(∥a∥p1 + ∥b∥p2 + ∥c∥p3) in Theorem 2.7, we obtain
the result. □
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