• Title/Summary/Keyword: UV emission

Search Result 623, Processing Time 0.03 seconds

Field Emission Characteristics of Surface-treated CNT Emitter by Ar Ion Bombardment (아르곤 이온에 의해 표면처리된 CNT 에미터의 전계방출 특성)

  • Kwon, Sang-Jik
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A surface treatment was performed after the screen printing of a carbon nanotube paste for obtaining the carbon nanotube field emission array(CNT FEA) on the soda-lime glass substrate. In this experiment, Ar ion bombardment was applied as an effective surface treatment method. After making a cathode electrode on the glass substrate, photo sensitive CNT paste was screen-printed, and then back-side was exposure by uv light. Then, the exposed CNT paste was selectively remained by development. After post-baking, the remained CNT paste was bombarded by accelerated Ar ions for removing some binders and exposing only CNTs. As results, the field emission characteristics were strongly depended on the accelerating energy. At 100 eV, the emission was highest and as the acceleration energy increases more then 100 eV, the emission decreased. This was due to the removal of CNT itself as well as binders.

Fabrication of Transparent Ultra-thin Single-walled Carbon Nanotube Films for Field Emission Applications

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.353-353
    • /
    • 2008
  • Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.

  • PDF

The Study of Ag Thin Film of Suitable Anode for T-OLED: Focused on Nanotribology Methode (UV 처리에 의한 T-OLED용 산화전극에 적합한 Ag 박막연구: Nano-Mechanics 특성 분석을 중심으로)

  • Lee, Kyu Young;Kim, Soo In;Kim, Joo Young;Kwon, Ku Eun;Kang, Yong Wook;Son, Ji Won;Jeon, Jin Woong;Kim, Min Chul;Lee, Chang Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.328-332
    • /
    • 2012
  • The work function of Ag (silver) is too low (~4.3 eV) to be used as an electrode of T-OLED (Top Emission Organic Light Emitting Diode). To solve this weakness, researches used plasma-, UV-, or thermal treatment on Ag films in order to increase the work function (~5.0 eV). So, most of studies have focused only on the work function of various treated Ag films, but studies focusing on nanomechanical properties were very important to investigate the efficiency and life time of T-OLED etc. In this paper, we focused on the mechanical properties of the Ag and $AgO_x$ film. The Ag was deposited on a glass substrate with the thickness of 150 nm by using rf-magnetron sputter with the power was fixed at 100 W and working pressure was 3 mTorr. The deposited Ag film was UV treated by UV lamp for several minutes (0~9 min). We measured the sheet resistance and mechanical property of the deposited film. From the experimental result, there were some differences of the sheet resistance and surface hardness of Ag thin film between short time (0~3 min) and long time UV treatment. These result presumed that the induced stress was taken place by the surface oxidation after UV treatment.

Fabrication of Patchable Organic Lasing Sheets via Soft Lithography

  • Kim, Ju-Hyung
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2016
  • Here, we report a novel fabrication technique for patchable organic lasing sheet based on non-volatile liquid organic semiconductors and freestanding polymeric film with high flexibility and patchability. For this work, we have fabricated the second-order DFB grating structure, which leads to surface emission, embedded in the freestanding polymeric film. Using an ultra-violet (UV) curable polyurethaneacrylate (PUA) mixture, the periodic DFB grating structure can be easily prepared on the freestanding polymeric film via a simple UV curing process. Due to unsaturated acrylate remained in the PUA mixture after UV curing, the freestanding PUA film provides adhesive properties, which enable mounting of the patchable organic lasing sheet onto non-flat surfaces with conformal contact. To achieve laser actions in the freestanding resonator structure, a composite material of liquid 9-(2-ethylhexyl)carbazole (EHCz) and organic laser dyes was used as the laser medium. Since the degraded active materials can be easily refreshed by a simple injection of the liquid composite, such a non-volatile liquid organic semiconducting medium has degradation-free and recyclable characteristics in addition to other strong advantages including tunable optoelectronic responses, solvent-free processing, and ultimate mechanical flexibility and uniformity. Lasing properties of the patchable organic lasing sheet were also investigated after mounting onto non-flat surfaces, showing a mechanical tunability of laser emission under variable surface curvature. It is anticipated that these results will be applied to the development of various patchable optoelectronic applications for light-emitting displays, sensors and data communications.

Vibronic Emission Spectrum of Jet-Cooled o-Tolunitrile in a Corona Excited Supersonic Expansion

  • Park, Chan-Ho;Lee, Gi-Woo;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.881-885
    • /
    • 2006
  • We have employed a technique of corona excited supersonic expansion to generate electronically excited but jet-cooled o-tolunitrile. The vibronically well-resolved emission spectrum of the jet-cooled o-tolunitrile in the $S_{1}\rightarrow S_{0}$ transition was recorded in the uv region using a Fourier transform spectrometer equipped with a Quartz-uv beam splitter. The electronic transition and vibrational mode frequencies in the ground electronic state were accurately determined from the analysis of the spectra observed.

Assignment of Vibronic Emission Spectra of Jet-Cooled m-Tolunitrile

  • Park, Chan Ho;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1377-1380
    • /
    • 2006
  • The technique of corona-excited supersonic expansion was applied to produce electronically excited but rovibrationally cooled m-tolunitrile. The well-resolved vibronic emission spectrum of the jet-cooled m-tolunitrile in the $S_1\;\rightarrow \;S_0$ transition was recorded in the uv region using a Fourier transform spectrometer equipped with a Quartz-uv beam splitter. From an analysis of the spectrum observed, it was confirmed that the electronic transition and vibrational mode frequencies in the ground electronic state were accurately determined.

Synthesis and Photophysical Properties of Bispsoralen Derivatives Linked by a Bisamide-polymethylene Chain

  • Yoo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1715-1719
    • /
    • 2007
  • New bispsoralen derivatives 5-10, 8-MOP-NHCO(CH2)nCONH-8-MOP (BPSBA-Cn, n = 0, 1, 2, 3, 4 and 5) in which 5 position of an 8-methoxypsoralen (8-MOP) is linked by various lengths of bisamide polymethylene chain to 5 position of the other 8-MOP, have been synthesized by the amidation of 5-amino-8-methoxypsoralen (12) with α,ω-alkanoyl dichloride. Photophysical properties of their derivatives including π?π stacking interaction between the two aromatic moieties were investigated by UV absorption and fluorescence emission spectra. Efficient ring-ring stacking interactions have been observed in BPSBA-C4 (9) from the percent hypochromism (%H) of the models.

Photoluminescence of SrO-$Al_2O_3$ Doped with Eu and Ce Excited at near UV

  • Han, Sang-Hyuk;Kim, Young-Jin;Chung, Sung-Mook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.654-656
    • /
    • 2004
  • The effect of excitation energy and various dopants(Eu and Ce) on the emission wavelength and intensity were investigated. According to PL spectra, SrO-$Al_2O_3$ phosphors had wide absorption band at nUV. By substituting Ce for Eu, the emission band and excitation wavelength were shifted to shorter wavelength. Ce doped $SrAl_2O_4$ and $Sr_4Al_{14}O_{25}$ showed greenish blue(475nm) and blue(400nm), respectively.

  • PDF

Current Modeling for Accumulation Mode GaN Schottky Barrier MOSFET for Integrated UV Sensors

  • Park, Won-June;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • The drain current of the SB MOSFET was analytically modeled by an equation composed of thermionic emission and tunneling with consideration of the image force lowering. The depletion region electron concentration was used to model the channel electron concentration for the tunneling current. The Schottky barrier width is dependent on the channel electron concentration. The drain current is changed by the gate oxide thickness and Schottky barrier height, but it is hardly changed by the doping concentration. For a GaN SB MOSFET with ITO source and drain electrodes, the calculated threshold voltage was 3.5 V which was similar to the measured value of 3.75 V and the calculated drain current was 1.2 times higher than the measured.

Hydrophobic Core Variant Ubiquitin Forms a Molten Globule Conformation at Acidic pH

  • Park, Soon-Ho
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.676-683
    • /
    • 2004
  • The conformational properties of hydrophobic core variant ubiquitin (Val26 to Ala mutation) in an acidic solution were studied. The intrinsic tryptophan fluorescence emission spectrum, far-UV and near-UV circular dichroic spectra, the fluorescence emission spectrum of 8-anilinonaphthalene-1-sulfonic acid in the presence of V26A ubiquitin, and urea-induced unfolding measurements indicate this variant ubiquitin to be in the partially folded molten globule conformation in solution at pH 2. The folding kinetics from molten globule to the native state was nearly identical to those from the unfolded state to the native state. This observation suggests that the equilibrium molten globule state of hydrophobic core variant ubiquitin is an on-pathway folding intermediate.