P-70: Photoluminescence of SrO-Al₂O₃ Doped with Eu and Ce Excited at near UV Sang Hyuk Han¹, Young Jin Kim Dept. of Materials Science and Engineering, Kyonggi University, Suwon 443-760, Korea Sung Mook Chung Organic EL Device Team, ETRI, Deajeon, 305-350, Korea #### **Abstract** The effect of excitation energy and various dopants (Eu and Ce) on the emission wavelength and intensity were investigated. According to PL spectra, $SrO-Al_2O_3$ phosphors had wide absorption band at nUV. By substituting Ce for Eu, the emission band and excitation wavelength were shifted to shorter wavelength. Ce doped $SrAl_2O_4$ and $Sr_4Al_14O_{25}$ showed greenish blue (475nm) and blue (400nm), respectively. #### 1. Introduction In these years, the white LEDs organizing UV LED and RGB phosphors have been extensively investigated. Advantages of this LED are high efficiency and excellent CRI(Color Rendering Index). Furthermore, this LED is easy to control CCT(Correlated Color Temperature) by changing a ratio of RGB phosphor.[1,2] But, some problems were remained. The most important property of RGB phosphor for UV LED is that the phosphors are excited at near UV. Many phosphors of commercial business have excitation wavelength about 250nm. So, development of new phosphors for nUV excitation has been demanded. SrO-Al₂O₃ phosphors have various luminescent properties depending on dopants and mole ratios of raw materials. SrAl₂O₄:Eu and Sr₄Al₁₄O₂₅:Eu, Dy are known as long residual phosphor.[3-5] These phosphors are excited at above 350nm. So, they are one of promising phosphors to bring a solution above mentioned problem. In this experiment, SrAl₂O₄ and Sr₄Al₁₄O₂₅ phosphor were synthesized by solid state reaction. The effect of dopants on the luminescent properties was investigated. #### 2. Experiment SrCO₃ (Aldirich, 99.9%+), Eu₂O₃ (Aldrich, 99.99%), Dy₂O₃ (Aldirich, 99,99%), Ce₂O₃ (United International Inc., 99.99%), and H₃BO₃ (High Purity Chemical, 99.99%) were used as raw materials. SrO and Al₂O₃ was mixed at 1:1 and 4:7 mole ratio, respectively. As a flux, H₃BO₃ was added. The mixture was ball-milled for 24 hours and fired 5 hours at 1300 °C in N₂+vacuum atmosphere. N₂ gas was flowed at 5cc/min while firing. 1. E-mail: chinahan99@hanmail.net To investigated the dopant effects, $Sr_{1.x}Al_2O_4$: Eu_x (x=0.001~0.01), $Sr_{1.x}Al_2O_4$: Ce_x (x=0.03~0.08), $Sr_{4(1-x)}Al_{14}O_{25}$: Eu_x (x=0.02~0.08), and $Sr_{4(1-x)}Al_{14}O_{25}$: Ce_x (x=0.05~0.07) were synthesized. The crystalline of prepared powders were analyzed by XRD (X-ray diffractometer, SIEMENS D5005), and luminescence was measured by PL (Photoluminescence, PSI Darsa-5000) system. #### 3. Result & Discussion ## 3.1 Synthesis of SrAl₂O₄ and Sr₄Al₁₄O₂₅ Fig. 1 shows XRD patterns of SrAl₂O₄ with various contents of H₃BO₃ that was added as a flux. According to previous works,[3,5] a flux method has been introduced to synthesize SrO-Al₂O₃ powder. However, in these experimental conditions, a single phase SrAl₂O₄ could be obtained only without a flux, H₃BO₃. Fig. 1. XRD patterns of SrAl₂O₄ powders. Fig. 2. XRD patterns of Sr₄Al₁₄O₂₅ powders. (a) 0 mol H₃BO₃, (b) 0.2 mol H₃BO₃, (c) 0.4 mol H₃BO₃, (d) 0.6 mol H₃BO₃, and (e) 0.8 mol H₃BO₃ By adding H₃BO₃, other phases were appeared in XRD as shown in Fig. 1 (b) and (c). On the contrary, a single phase Sr₄Al₁₄O₂₅ could be obtained by adding a flux, H₃BO₃ as shown in Fig. 2 (d) and (e). When H₃BO₃ was not added, secondary phases such as Al₂O₃, SrAl₂O₄, and Sr₃Al₂O₆ were observed in Fig. 2 (a), (b), and (c). This indicated that H₃BO₃ was effective in synthesizing a single phase Sr₄Al₁₄O₂₅, but not for SrAl₂O₄. ### 3.2 Photoluminescence of SrAl₂O₄:Eu, Ce Fig. 3 shows PL spectra of SrAl₂O₄ doped with 6 mol% of Ce and 0.3 mol% Eu, respectively. Emission wavelength of SrAl₂O₄:Ce and SrAl₂O₄:Eu arte 475 nm (excited at 360 nm) and 515 nm (excited at 390 nm), respectively. Doping concentrations were decided from Fig. 4, which shows the PL intensity of SrAl₂O₄ as a function of doping concentrations of Eu and Ce. When doping 6 mol% of Ce and 0.3 mol% Eu, maximum intensities were observed, respectively. As shown in Fig. 3, PL spectra of SrAl₂O₄:Eu and SrAl₂O₄:Ce exhibited apparently different emission bands. It was known that the emission wavelength of SrAl₂O₄:Eu was about 510~520 nm. By substituting Ce for Eu, the emission wavelength shifted to the shorter one, about 475 nm that was greenish-blue. CIE of SrAl₂O₄:Ce was x=0.22 and y=0.31. Fig. 3. PL spectra of SrAl₂O₄:Eu and SrAl₂O₄:Ce. Fig. 4. PL intensity of SrAl₂O₄ as a function of doping concentrations of Eu and Ce. Fig. 5. PL spectra of Sr₄Al₁₄O₂₅:Eu and Sr₄Al₁₄O₂₅:Ce. Fig. 6. PL intensity of Sr₄Al₁₄O₂₅ as a function of doping concentration of Eu and Ce. ### 3.3 Photoluminescence of Sr₄Al₁₄O₂₅:Eu, Ce Sr₄Al₁₄O₂₅:Eu+Dy phosphors have been well known as long residual phosphors. They have a long decay time because of trap levels in band due to Dy.[6,7] However, Dy contributed to the weakening of the luminescent intensity. Therefore, a single dopant Eu is effective for the application to white LEDs. Fig. 5 shows PL spectra of Sr₄Al₁₄O₂₅:Ce and Sr₄Al₁₄O₂₅:Eu. Both doping concentrations of Ce and Eu are 6 mol%, which was determined from the results of PL intensity as a function of doping concentrations of Eu and Ce as shown in Fig. 6. The emission wavelength of Sr₄Al₁₄O₂₅:Eu was 490 nm, while that of Sr₄Al₁₄O₂₅:Ce was 400 nm. By substituting Ce for Eu, the emission band drastically shifted to the short wavelength. The reasons are not clear at now. However, following possibility can be assumed. As shown in Fig. 5, PL spectra of Sr₄Al₁₄O₂₅:Ce excited at 350 nm exhibit 400 nm emission that is near UV. So it can be used as nUV source. #### 4. Conclusion Ce dopant was substituted for Eu in SrO-Al₂O₃ phosphors, and the luminescent properties were compared with each other. Ce contributed to the shift of emission band to the shorter wavelength both in SrAl₂O₄ and Sr₄Al₁₄O₂₅ phosphors. SrAl₂O₄:Ce and Sr₄Al₁₄O₂₅:Ce exhibited the emission band at 475 nm and 400 nm, respectively. ## 5. Acknowledgements This work was supported by grant No.(R05-2003-000-10772-0) from Korea Science & Engineering Foundation ### 6. References - [1] Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, Appl. Phys. Lett., 74 558 (1999). - [2] E. Radkov, Conference Record of Light Emitting Diode 2003, Session 4, Technology Update:Phosphor, p.5 (Sandiego, October 2003). - [3] A. Nag and T.R.N. Kutty, J. Alloys and Compounds, 354 221 (2003). - [4] Y. Lin, Z. Tang, and Z. Zhang, Mater. Lett., 51 14 (2001) - [5] M. Kamada, J. Murakami, and N. Ohno, J. Luminescence, 87-89 1042 (2000). - [6] M. Peng, Z. Pei, G. Hong, and Q. Su, Chem. Phys. Lett., 317 1 (2003). - [7] T. Katsumata, S. Toyomane, A. Tonegawa, Y. Kanai, U. Kaneyama, K. Shakuno, R. Sakai, S. Komura, and T. Morikawa, J. Crystal Growth, 237-239 361 (2002)