Browse > Article
http://dx.doi.org/10.7464/ksct.2016.22.3.203

Fabrication of Patchable Organic Lasing Sheets via Soft Lithography  

Kim, Ju-Hyung (Department of Chemical Engineering, Pukyong National University)
Publication Information
Clean Technology / v.22, no.3, 2016 , pp. 203-207 More about this Journal
Abstract
Here, we report a novel fabrication technique for patchable organic lasing sheet based on non-volatile liquid organic semiconductors and freestanding polymeric film with high flexibility and patchability. For this work, we have fabricated the second-order DFB grating structure, which leads to surface emission, embedded in the freestanding polymeric film. Using an ultra-violet (UV) curable polyurethaneacrylate (PUA) mixture, the periodic DFB grating structure can be easily prepared on the freestanding polymeric film via a simple UV curing process. Due to unsaturated acrylate remained in the PUA mixture after UV curing, the freestanding PUA film provides adhesive properties, which enable mounting of the patchable organic lasing sheet onto non-flat surfaces with conformal contact. To achieve laser actions in the freestanding resonator structure, a composite material of liquid 9-(2-ethylhexyl)carbazole (EHCz) and organic laser dyes was used as the laser medium. Since the degraded active materials can be easily refreshed by a simple injection of the liquid composite, such a non-volatile liquid organic semiconducting medium has degradation-free and recyclable characteristics in addition to other strong advantages including tunable optoelectronic responses, solvent-free processing, and ultimate mechanical flexibility and uniformity. Lasing properties of the patchable organic lasing sheet were also investigated after mounting onto non-flat surfaces, showing a mechanical tunability of laser emission under variable surface curvature. It is anticipated that these results will be applied to the development of various patchable optoelectronic applications for light-emitting displays, sensors and data communications.
Keywords
Patchable electronics; Organic devices; Organic lasers; Polyurethaneacrylate; Soft lithography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, G., Zhu, R., and Yang, Y., "Polymer Solar Cells," Nat. Photon., 6(3), 153-161 (2012).   DOI
2 Dodabalapur, A., "Organic and Polymer Transistors for Electronics," Mater. Today, 9(4), 24-30 (2006).   DOI
3 Günes, S., Neugebauer, H., and Sariciftci, N. S., "Conjugated Polymer-Based Organic Solar Cells," Chem. Rev., 107(4), 1324-1338 (2007).   DOI
4 Mori, T., "Molecular Materials for Organic Field-Effect Transistors," J. Phys.: Condens. Matter, 20(18), 184010 (2008).   DOI
5 Uoyama, H., Goushi, K., Shizu, K., Nomura, H., and Adachi, C., "Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence," Nature, 492(7428), 234-238 (2012).   DOI
6 Wang, C., Dong, H., Hu, W., Liu, Y., and Zhu, D., "Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics," Chem. Rev., 112(4), 2208-2267 (2012).   DOI
7 Ribierre, J.-C., Aoyama, T., Muto, T., Imase, Y., and Wada, T., "Charge Transport Properties in Liquid Carbazole," Org. Electron., 9(3), 396-400 (2008).   DOI
8 Schmidt H., and Hawkins, A. R., "The Photonic Integration of Non-Solid Media Using Optofluidics," Nat. Photonics., 5(10), 598-604 (2011).   DOI
9 Kamino, B. A., Bender, T. P., and Klenkler, R. A., "Hole Mobility of a Liquid Organic Semiconductor," J. Phys. Chem. Lett., 3(8), 1002-1006 (2012).   DOI
10 Ribierre, J.-C., Aoyama, T., Kobayashi, T., Sassa, T., Muto, T., and Wada, T., "Influence of the Liquid Carbazole Concentration on Charge Trapping in C60 Sensitized Photorefractive Polymers," J. Appl. Phys., 102(3), 033106 (2007).   DOI
11 Babu, S. S., Aimi, J., Ozawa, H., Shirahata, N., Saeki, A., Seki, S., Ajayaghosh, A., Möhwald, H., and Nakanishi, T., "Solvent-Free Luminescent Organic Liquids," Angew. Chem., Int. Ed. Engl., 51(14), 3391-3395 (2012).   DOI
12 Shim, C.-H., Hirata, S., Oshima, J., Edura, T., Hattori, R., and Adachi, C., "Uniform and Refreshable Liquid Electroluminescent Device with a Back Side Reservoir," Appl. Phys. Lett., 101(11), 113302 (2012).   DOI
13 Kasahara, T., Matsunami, S., Edura, T., Oshima, J., Adachi, C., Shoji, S., and Mizuno, J., "Fabrication and Performance Evaluation of Microfluidic Organic Light Emitting Diode," Sens. Actuators, A, 195(1), 219-223 (2013).   DOI
14 Xu D., and Adachi, C., "Organic Light-Emitting Diode with Liquid Emitting Layer," Appl. Phys. Lett., 95(5), 053304 (2009).   DOI
15 Hirata, S., Kubota, K., Jung, H. H., Hirata, O., Goushi, K., Yahiro, M., and Adachi, C., "Improvement of Electroluminescence Performance of Organic Light-Emitting Diodes with a Liquid-Emitting Layer by Introduction of Electrolyte and a Hole-Blocking Layer," Adv. Mater., 23(7), 889-893 (2011).   DOI
16 Kubota, K., Hirata, S., Shibano, Y., Hirata, O., Yahiro, M., and Adachi, C., "Liquid Carbazole Substituted with a Poly (ethylene oxide) Group and Its Application for Liquid Organic Light-emitting Diodes," Chem. Lett., 41(9), 934-936 (2012).   DOI
17 Snaith, H. J., Zakeeruddin, S. M., Wang, Q., Péchy, P., and Grätzel, M., "Dye-Sensitized Solar Cells Incorporating a Liquid Hole-Transporting Material," Nano Lett., 6(9), 2000-2003 (2006).   DOI
18 Choi, S.-J., Yoo, P. J., Baek, S. J., Kim, T. W., and Lee, H. H., "An Ultraviolet-Curable Mold for Sub-100-nm Lithography," J. Am. Chem. Soc., 126(25), 7744-7745 (2004).   DOI
19 Ribierre, J.-C., Aoyama, T., Muto, T., and André, P., "Hybrid Organic-Inorganic Liquid Bistable Memory Devices," Org. Electron., 12(11), 1800-1805 (2011).   DOI
20 Choi, E. Y., Mager, L., Cham, T. T., Dorkenoo, K. D., Fort, A., Wu, J. W., Barsella, A., and Ribierre, J.-C., "Solvent-Free Fluidic Organic Dye Lasers," Opt. Express, 21(9), 11368-11375 (2013).   DOI
21 Kim, J.-H., Inoue, M., Zhao, L., Komino, T., Seo, S., Ribierre, J.-C., and Adachi, C., "Tunable and Flexible Solvent-Free Liquid Organic Distributed Feedback Lasers," Appl. Phys. Lett., 106(5), 053302 (2015).   DOI
22 Choi, S.-J., Kim, H. N., Bae, W. G., and Suh, K.-Y., "Modulus-and Surface Energy-Tunable Ultraviolet-Curable Polyurethane Acrylate: Properties and Applications," J. Mater. Chem., 21 (38), 14325-14335 (2011).   DOI
23 Kim, J.-H., Hong, S. H., Seong, K.-d., and Seo, S., "Fabrication of Organic Thin-Film Transistors on Three-Dimensional Substrate Using Free-Standing Polymeric Masks Based on Soft Lithography," Adv. Funct. Mater., 24(16), 2404-2408 (2014).   DOI
24 Kim, J.-H., Han, M. J., and Seo, S., "Flexible, Stretchable, and Patchable Organic Devices Integrated on Freestanding Polymeric Substrates," J. Polym. Sci., Part B: Polym. Phys., 53(6) 453-460 (2015).   DOI
25 Kim, J.-H., Liang, Y., and Seo, S., "Patchable Thin-Film Strain Gauges Based on Pentacene Transistors," Org. Electron., 26, 355-358 (2015).   DOI
26 Wenger, B., Tétreault, N., Welland, M. E., and Friend, R. H., "Mechanically Tunable Conjugated Polymer Distributed Feedback Lasers," Appl. Phys. Lett., 97(19), 193303 (2010).   DOI