• 제목/요약/키워드: Trench field ring

검색결과 15건 처리시간 0.032초

내압특성개선을 위한 트렌치 필드링 설계 및 전기적특성에 관한 연구 (A Study on Electrical Characteristics of Trench Field Ring for Breakdown Characteristics)

  • 강이구;김범준;이용훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-5
    • /
    • 2010
  • In this paper, we proposed trench field ring for breakdown voltage of power devices. The proposed trench field ring was improved 10% efficiency comparing with conventional field ring. we analyzed five parameters of trench field ring for design of trench field ring and carried out 2-D devices simulation and process simulations. That is, we analyzed number of field ring, juction depth, distance of field rings, trench width, doping profield. The proposed trench field ring was better to more 1000 V.

고 내압 전력 소자 설계를 위한 필드 링 최적화에 관한 연구 (Optimal Design of Field Ring for Power Devices)

  • 강이구
    • 전기전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.199-204
    • /
    • 2010
  • 본 논문에서는 전력반도체의 내압을 유지하는데 있어서 가장 중요한 필드 링의 개선을 위해 새로운 구조의 필드 링을 제안하였다. 제안한 트렌치 필드 링은 기존의 일반 필드 링에 비해 10%이상 효율을 개선하였다. 트렌치 필드 링의 설계를 위해 5가지의 변수를 두고 최적화 시뮬레이션을 수행하였으며, 수행한 파라미터 결과를 가지고 마스크를 설계하여 제작을 진행하였다. 내압이 증가하면 증가할 수록 트렌치 필드링이 일반 필드 링보다 더 좋은 결과를 가져올 수 있었다. 이러한 결과는 앞으로 전력반도체 소자인 IGBT, Power MOS 및 MCT 소자의 설계에 충분히 활용할 수 있을 것으로 판단된다.

전력소자를 위한 새로운 홈구조 터미네이션 (A New Trench Termination for Power Semiconductor Devices)

  • 민원기;박남천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1337-1339
    • /
    • 1998
  • The trench termination scheme is introduced for high voltage devices. The curvature of the depletion region at field limiting ring is critical factor to determine the breakdown voltage. The smooth curvature of the depletion junction alleviate the electric field crowding effect around this region. In the trench field limiting ring, the radius of the depletion region is smaller than conventional field limiting ring, but the distance between every trench is spaced small enough to punchthrough before initiation of local breakdown. The trench field limiting ring on silicon can ne formed by RIE followed by oxidation on side wall surface of the trench, and polysilicon filling. The combined termination of this trench floating field ring and field plate have been designed and analyzed. The breakdown simulation by 2-dimensional TCAD shows that the cylindrical junction breakdown voltage for substrate doping might be 99 percent of the ideal breakdwon voltage for substrate doping concentration of $3\times10^{14}cm^{-3}$ with about $100{\mu}m$ of lateral termination width.

  • PDF

A Study of Field-Ring Design using a Variety of Analysis Method in Insulated Gate Bipolar Transistor (IGBT)

  • Jung, Eun Sik;Kyoung, Sin-Su;Chung, Hunsuk;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1995-2003
    • /
    • 2014
  • Power semiconductor devices have been the major backbone for high-power electronic devices. One of important parameters in view of power semiconductor devices often characterize with a high breakdown voltage. Therefore, many efforts have been made, since the development of the Insulated Gate Bipolar Transistor (IGBT), toward having higher level of breakdown voltage, whereby the typical design thereof is focused on the structure using the field ring. In this study, in an attempt to make up more optimized field-ring structure, the characteristics of the field ring were investigated with the use of theoretical arithmetic model and methodologically the design of experiments (DOE). In addition, the IGBT having the field-ring structure was designed via simulation based on the finding from the above, the result of which was also analyzed. Lastly, the current study described the trench field-ring structure taking advantages of trench-etching process having the improved field-ring structure, not as simple as the conventional one. As a result of the simulation, it was found that the improved trench field-ring structure leads to more desirable voltage divider than relying on the conventional field-ring structure.

이중 이온주입 공정을 이용한 트렌치 필드링 설계 최적화 및 전기적 특성에 관한 연구 (The Research on Trench Etched Field Ring with Dual Ion-Implantation for Power Devices)

  • 양성민;오주현;배영석;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제23권5호
    • /
    • pp.364-367
    • /
    • 2010
  • The dual ion-implantation trench edge termination techniques were investigated and optimized using a two-dimensional device simulator. By trenching the field ring site which would be dual implanted, a better blocking capability can be obtained. The results show that the p-n junction with dual implanted junction field-ring can accomplish nearly 20% increase of breakdown voltage in comparison with the conventional trench field-rings. The fabrication is relatively difficult. But the trench etched field ring with dual ion-implantation is surpassed for breakdown voltage and consume same area and extensive device simulations as well as qualitative analysis confirm these conclusions.

500 V급 Unified Trench Gate Power MOSFET 공정 및 제작에 관한 연구 (The Process and Fabrication of 500 V Unified Trench Gate Power MOSFET)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.720-725
    • /
    • 2013
  • Power MOSFET operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. We have analyzed trench process, field limit ring process for fabrication of unified trench gate power MOSFET. And we have analyzed electrical characteristics of fabricated unified trench gate power MOSFET. The optimal trench process was based on SF6. After we carried out SEM measurement, we obtained superior trench gate and field limit ring process. And we compared electrical characteristics of planar and trench gate unified power MOSFET after completing device fabrication. As a result, the both of them was obtained 500 V breakdown voltage. However trench gate unified power MOSFET was shown improved Vth and on state voltage drop characteristics than planar gate unified power MOSFET.

낮은 온저항과 칩 효율화를 위한 Unified Trench Gate Power MOSFET의 설계에 관한 연구 (Design of Unified Trench Gate Power MOSFET for Low on Resistance and Chip Efficiency)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.713-719
    • /
    • 2013
  • Power MOSFET operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. We have optimal designed planar and trench gate power MOSFET for high breakdown voltage and low on resistance. When we have designed $6,580{\mu}m{\times}5,680{\mu}m$ of chip size and 20 A current, on resistance of trench gate power MOSFET was low than planar gate power MOSFET. The on state voltage of trench gate power MOSFET was improved from 4.35 V to 3.7 V. At the same time, we have designed unified field limit ring for trench gate power MOFET. It is Junction Termination Edge type. As a result, we have obtained chip shrink effect and low on resistance because conventional field limit ring was convert to unify.

Analysis of Electrical Characteristics According to Fabrication of 500 V Unified Trench Gate Power MOSFET

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권4호
    • /
    • pp.222-226
    • /
    • 2016
  • This paper investigated the trench process, unified field limit ring, and other products for the development of a 500 V-level unified trench gate power MOSFET. The optimal base chemistry for the device was found to be SF6. In SEM analysis, the step process of the trench gate and field limit ring showed outstanding process results. After finalizing device design, its electrical characteristics were compared and contrasted with those of a planar device. It was shown that, although both devices maintained a breakdown voltage of 500 V, the Vth and on-state voltage drop characteristics were better than those of the planar type.

The Research of Deep Junction Field Ring using Trench Etch Process for Power Device Edge Termination

  • 김요한;강이구;성만영
    • 전기전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.235-238
    • /
    • 2007
  • 2차원 소자 시뮬레이터인 TMA 메디치를 이용하여 필드링와 깊은 접합 필드링에 대해 연구하였다. 이온 주입될 위치를 미리 트랜치 식각을 시킴으로써 항복전압 특성을 향상시킬 수 있었다. 시뮬레이션 결과 기존 필드링의 항복전압대비 깊은 접합 필드링 항복전압은 약 30%의 증가를 보였다. 깊은 접합 필드링은 같은 면적을 차지하는 조건하에서 설계 및 제작이 비교적 용이하고, 표면 전하의 영향도 적은 것으로 나타났다. 본 논문에서는 여러 분석을 통해 깊은 접합 필드링의 향상된 특성을 논하였다.

  • PDF

Trench와 FLR을 이용한 새로운 접합 마감 구조 (A New Junction Termination Structure by Employing Trench and FLR)

  • 하민우;오재근;최연익;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권6호
    • /
    • pp.257-260
    • /
    • 2003
  • We have proposed the junction termination structure of IGBT (Insulated Gate Bipolar Transistor) by employing trench and FLR (Field Limiting Ring), which decrease the junction termination area at the same breakdown voltage. Our proposed junction termination structure, trench FLR is verified by numerical simulator MEDICI. In 600V rated device, the junction termination area is decreased 20% compared with that of the conventional FLR structure. The breakdown voltage of trench FLR with 4 trenches is 768 V, 99 % of ideal parallel-plane junction(1-D) $BV_ceo$.