• 제목/요약/키워드: Toeplitz Matrix

검색결과 42건 처리시간 0.021초

SLANT H-TOEPLITZ OPERATORS ON THE HARDY SPACE

  • Gupta, Anuradha;Singh, Shivam Kumar
    • 대한수학회지
    • /
    • 제56권3호
    • /
    • pp.703-721
    • /
    • 2019
  • The notion of slant H-Toeplitz operator $V_{\phi}$ on the Hardy space $H^2$ is introduced and its characterizations are obtained. It has been shown that an operator on the space $H^2$ is a slant H-Toeplitz if and only if its matrix is a slant H-Toeplitz matrix. In addition, the conditions under which slant Toeplitz and slant Hankel operators become slant H-Toeplitz operators are also obtained.

COMPUTATION OF THE MATRIX OF THE TOEPLITZ OPERATOR ON THE HARDY SPACE

  • Chung, Young-Bok
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1135-1143
    • /
    • 2019
  • The matrix representation of the Toeplitz operator on the Hardy space with respect to a generalized orthonormal basis for the space of square integrable functions associated to a bounded simply connected region in the complex plane is completely computed in terms of only the Szegő kernel and the Garabedian kernels.

MATRICES OF TOEPLITZ OPERATORS ON HARDY SPACES OVER BOUNDED DOMAINS

  • Chung, Young-Bok
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1421-1441
    • /
    • 2017
  • We compute explicitly the matrix represented by the Toeplitz operator on the Hardy space over a smoothly finitely connected bounded domain in the plane with respect to special orthonormal bases consisting of the classical kernel functions for the space of square integrable functions and for the Hardy space. The Fourier coefficients of the symbol of the Toeplitz operator are obtained from zeroth row vectors and zeroth column vectors of the matrix. And we also find some condition for the product of two Toeplitz operators to be a Toeplitz operator in terms of matrices.

The Toeplitz Circulant Jacket 행렬 (The Toeplitz Circulant Jacket Matrices)

  • 박주용;김정수;페렌스 스졸로시;이문호
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.19-26
    • /
    • 2013
  • 본 논문에서는 모든 Toeplitz Jacket 행렬이 순환(circulant)하고 동치(equivalence)에 이름을 보여준다. 순환하고 동치에 이르면 Toeplitz Jacket 행렬의 새로운 구조를 만들 수 있다. Toeplitz Jacket(TJ) 행렬의 구성법을 제시하고 $4{\times}4$$8{\times}8$의 Toeplitz Jacket 행렬의 예를 제시 하였다. 따라서 Toeplitz real Jacket 행렬은 순환하거나 negacycle임을 보여준다.

SPECIAL ORTHONORMAL BASIS FOR L2 FUNCTIONS ON THE UNIT CIRCLE

  • Chung, Young-Bok
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2013-2027
    • /
    • 2017
  • We compute explicitly the matrices represented by Toeplitz operators on the Hardy space over the unit circle with respect to a special orthonormal basis constructed by author in terms of their symbols. And we also find a necessary condition for the matrix generated by the product of two Toeplitz operators with respect to the basis to be a Toeplitz matrix by a direct calculation and we finally solve commuting problems of two Toeplitz operators in terms of symbols. This is a generalization of the classical results obtained regarding to the orthonormal basis consisting of the monomials.

벡터화 기술을 이용한 대규모 MIMO 시스템의 간단한 Toeplitz 채널 행렬 분해 (A Simple Toeplitz Channel Matrix Decomposition with Vectorization Technique for Large scaled MIMO System)

  • 박주용;모하마드 아부 하니프;김정수;송상섭;이문호
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.21-29
    • /
    • 2014
  • 오늘날 수많은 사용자와 제한된 메모리 공간 때문에 빅 데이터(big data)를 위한 메모리 공간 문제가 중요한 이슈로 부상하고 있다. 대규모 MIMO 시스템에서 Toeplitz 채널은 전력효율 문제뿐아니라 성능 개선에 커다란 역할을 할 수 있다. 본 논문에서는 행렬 벡터화(vectorization)에 기반한 Toeplitz 채널 분해를 제안하고, 이때 대규모 MIMO 시스템을 위한 채널에 Toeplitz 행렬을 사용하며, 또 Toeplitz Jackrt행렬이 푸리에 고속 변환(FFT)처럼 Cooley-Tukey sparse 행렬로 분해됨을 보인다.

새로운 블록순환 Hadamard 행렬 (The New Block Circulant Hadamard Matrices)

  • 박주용;이문호;단위
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.3-10
    • /
    • 2014
  • 본 논문에서는 기존 Toeplitz행렬(matrix)과 블록 순환(block circulant)행렬에 대해 검토하고, 새로운 순환 Hadamard 행렬을 제안했다. 제안한 순환 Hadamard 행렬은 +1과 -1로 구성되나 구조가 기존 Hadamard 행렬과는 다르다. 고속 알고리즘을 통해 원래의 계산량을 $Nlog_2N$개의 덧셈으로 줄일 수 있다. 이 행렬은 Massive MIMO 채널 추정 및 FIR 필터 설계, 신호처리 등에 응용이 가능하다.

대칭 토플리츠 시스템의 선행조건에 대한 특정성질 연구 (A Study for Spectral Properties of Preconditioner of Symmetric Toeplitz Systems)

  • 백란
    • 디지털콘텐츠학회 논문지
    • /
    • 제10권4호
    • /
    • pp.579-585
    • /
    • 2009
  • Tyrtshnikov[9]의 연구에서는 토플리츠 선형시스템에서 토플리츠 선행조건으로 일반해를 구하는 방법들을 제시하고 있다. 또한 대칭 토플리츠 행렬에서의 선행조건 행렬을 선택하는 방법도 소개 하였다. 본 연구는 토플리츠 시스템에서 새롭게 선행조건 찾는 방법을 소개하고 있으며, 선행조건행렬들의 분석을 통해 대칭 토플리츠 행렬의 고유값들과 대칭 토플리츠행렬로 부터 생성된 선행조건행렬의 고유값들이 매우 근접하다는 결과를 나타내고 있다. 즉, 선행조건시스템 $C_0^{-1}T$의 고유값들은 1에 모두 접근하게되면, 선행조건 시스템의 수렴속도는 superlinear이다. 본 연구에서 생성된 선행조건행렬 $C_0$은 선행조건시스템의 superlinear의 수렴속도로 계산하게 된다. 또한 토플리츠 행렬은 이미지 프로세싱이나 시그널 프로세싱에서 많이 응용되고 있으므로 본 연구에서 개발한 선행조건행렬로부터 다양한 응용성을 높일 수 있다. 본연구의 또 다른 특징은 토플리츠 행렬의 중요한 성질을 보존하면서 선행조건행렬을 생성하였다.

  • PDF

ON REGULARITY OF BLOCK TRIANGULAR FUZZY MATRICES

  • Meenakshi, A.R.
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.207-220
    • /
    • 2004
  • Necessary and sufficient conditions are given for the regularity of block triangular fuzzy matrices. This leads to characterization of idem-potency of a class of triangular Toeplitz matrices. As an application, the existence of group inverse of a block triangular fuzzy matrix is discussed. Equivalent conditions for a regular block triangular fuzzy matrix to be expressed as a sum of regular block fuzzy matrices is derived. Further, fuzzy relational equations consistency is studied.