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SLANT H-TOEPLITZ OPERATORS ON THE HARDY SPACE

Anuradha Gupta and Shivam Kumar Singh

Abstract. The notion of slant H-Toeplitz operator Vφ on the Hardy

space H2 is introduced and its characterizations are obtained. It has
been shown that an operator on the space H2 is a slant H-Toeplitz if and

only if its matrix is a slant H-Toeplitz matrix. In addition, the conditions

under which slant Toeplitz and slant Hankel operators become slant H-
Toeplitz operators are also obtained.

1. Introduction

Let µ denote the normalised Lebesgue measure on the unit circle T and
the space L2 be the space of all complex valued square integrable measurable
functions on T. The space L2 is a Hilbert space with the norm ‖ · ‖2 induced
by the inner product

〈f, g〉 =

∫
fḡdµ for all f, g ∈ L2.

For each integer n, let en(z) = zn for z ∈ T. Then the collection {en}n∈Z forms

an orthonormal basis for L2, where Z denote the set of integers. The Hardy
space is defined by

H2 =
{
f : f is analytic on D and ‖f‖2 = sup

0<r<1

∫ 2π

0

|f(reiθ)|2 dθ

2π
<∞

}
,

where dθ is Lebesgue arc-length measure on the unit circle. Alternatively on
the unit circle, the Hardy space is given by

H2 =
{
f =

∞∑
n=−∞

anen ∈ L2 : an = 〈f, en〉 = 0 for all n < 0
}
.

The space H2 being a closed subspace of L2 is a Hilbert space under the norm

‖f‖ =

( ∞∑
n=0

|an|2
)1/2

<∞ where f =

∞∑
n=0

anen.
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The space L∞ denotes the Banach space of all essentially bounded measurable
functions with norm given by ‖φ‖∞ = ess sup {|φ(z)| : z ∈ T}. Let B(L2) and
B(H2) denote the space of all bounded linear operators on the spaces L2 and
H2 respectively. Let P denote the orthogonal projection from the space L2

to the space H2. For a given φ ∈ L∞, the induced multiplication operator
Mφ : L2 −→ L2 is defined as Mφf = φf for each f ∈ L2 and the Toeplitz
operator is the operator Tφ ∈ B(H2) such that Tφ = PMφ|H2 . For the symbol
φ ∈ L∞, Hankel operator Hφ ∈ B(H2) is defined as the operator Hφ = PMφJ ,
where J , the flip operator, is the operator J : H2 −→ (H2)⊥ given by J(en) =
e−n−1 for all n ≥ 0. The slant Toeplitz operator [4, 8, 9] with the symbol φ is
defined as the operator Aφ ∈ B(L2) such that Aφ = WMφ, where the operator
W defined on L2 is given by

W (en) =

{
en

2
, if n is even

0, otherwise

for each integer n and its adjoint is given by W ?(en) = e2n. The compression
of slant Toeplitz operator [13] to the space H2 is the operator Bφ defined by
Bφ = PAφ|H2 . The slant Hankel operator [5,14] on the space H2 is given by Lφ
such that Lφ = WHφ. For a non-constant analytic function φ, the composition
operator [2, 3] is the operator Cφ defined on H2 such that Cφ(f)(z) = f(φ(z))
for each f ∈ H2 and z ∈ T.

The study of slant Toeplitz operators has gained voluminous importance due
to its multidirectional applications as these classes of operators have played
major role in wavelet analysis, dynamical system and in curve and surface
modelling [6, 7, 10–12]. The study of Hankel and slant Hankel operators has
numerous applications, in interpolation problems, Hamburger’s moment prob-
lem, rational approximation theory and stationary process. In 2007, Arora
et al. [1] introduced and studied the notion of H-Toeplitz operators on the
space H2. The H-Toeplitz system consists matrix equation of the form Ax =
b, where A is an n× n H-Toeplitz matrix and x, b ∈ Cn. It can be noted that
the n×n H-Toeplitz matrix A has 2n− 1 degree of the freedom rather than n2

and therefore in this case, it is easier to solve the system of linear equations.
Motivated by these studies, we have introduced the notion of slant H-Toeplitz
operator on the Hardy space H2 and studied its basic properties. The impor-
tance of the notion of slant H-Toeplitz operators is that it itself is not a slant
Toeplitz or slant Hankel operator but under some conditions it coincides with
the classes of slant Toeplitz and slant Hankel operators on the Hardy space.

The article is organized as follows. In Section 2, we have defined the notion
of slant H-Toeplitz operators on the Hardy space H2 and obtained the con-
ditions under which the class of slant H-Toeplitz operators become isometry,
compact and hyponormal. In Section 3, we have obtained characterizations
for an operator to be slant H-Toeplitz operator on the Hardy space H2. In
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particular, we have shown that an operator on H2 is a slant H-Toeplitz oper-
ator if and only if its matrix is a slant H-Toeplitz matrix. Questions such as
when slant H-Toeplitz operators become slant Toeplitz and slant Hankel are
also answered.

2. Slant H-Toeplitz operators

The H-Toeplitz operator [1] with a symbol φ is the operator Sφ ∈ B(H2)
defined by Sφ(f) = PMφK(f) for all f ∈ H2, where the operator K : H2 −→
L2 is given by K(e2n) = en and K(e2n+1) = e−n−1 for all non-negative integers
n. The adjoint K∗ of the operator K is given by K∗(en) = e2n, K

∗(e−n−1) =
e2n+1 for n ≥ 0. Thus, K∗K = I on H2 and KK∗ = I on L2. Motivated by
the definition of H-Toeplitz operator, we define slant H-Toeplitz operator on
the space H2 as follows:

Definition 2.1. For φ ∈ L∞, the slant H-Toeplitz operator is defined as the
operator Vφ : H2 −→ H2 such that Vφ(f) = WPMφK(f) for each f in H2.

The operator Vφ with symbol φ ∈ L∞ is a bounded linear operator as we
have ‖Vφ‖ = ‖WSφ‖ = ‖WPMφK‖ ≤ ‖W‖‖φ‖∞‖K‖ ≤ ‖φ‖∞.

Theorem 2.2. The correspondence φ −→ Vφ is one-one.

Proof. Let φ(z) =
∑∞
n=−∞ anz

n, ψ(z) =
∑∞
n=−∞ bnz

n ∈ L∞ be such that
Vφ = Vψ. Therefore, Vφ − Vψ = 0, or equivalently, WPMφ−ψK = 0. This
implies that

(2.1) WPMφ−ψK(em) = 0 for all m ≥ 0.

Therefore, in particular, we have WPMφ−ψK(e2m(z)) = 0 for all z ∈ T, which
gives

WP

∞∑
n=−∞

(an − bn) zn+m = 0,

that is,
∑∞
n=0 (a2n−m − b2n−m) zn = 0. Therefore,

〈WPMφ−ψK(e2m(z)),WPMφ−ψK(e2m(z))〉 = 0

which implies that 〈
∑∞
n=0 (a2n−m − b2n−m) zn,

∑∞
n=0 (a2n−m − b2n−m) zn〉 =

0, or equivalently,
∑∞
n=0 |a2n−m − b2n−m|2 = 0. Thus, it follows that a2n−m =

b2n−m for all n,m ≥ 0. Similarly, using equation (2.1), we get that

WPMφ−ψK(e2m+1(z)) = 0

which on using the definitions of operators W,P and K shows that
∞∑
n=0

(a2n+m+1 − b2n+m+1) zn = 0

and therefore it follows that a2n+m+1 = b2n+m+1 for each n ≥ 0 and m ≥ 0.
Hence, an = bn for all integers n and this proves φ = ψ a.e. on T. �
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Let φ =
∑∞
n=−∞ anen ∈ L∞ and (ai,j) be the matrix of slant H-Toeplitz

operator Vφ with respect to the orthonormal basis {en}n≥0, where the (i, j)th

entry, ai,j = 〈Vφej , ei〉 satisfies the following:

ak,0 =

{
ak+j,4j for all j ≥ 0 and k ≥ 0,

ak−j,4j−1 for all j = 1, 2, 3, . . . , k − j ≥ 0 and k ≥ 1,

and

a0,2k = ai,2k+4i for all i ≥ 1, k ≥ 1.

Therefore, the matrix representation of slant H-Toeplitz operator Vφ is given
by

Vφ =



a0 a1 a−1 a2 a−2 a3 a−3 · · ·
a2 a3 a1 a4 a0 a5 a−1 · · ·
a4 a5 a3 a6 a2 a7 a1 · · ·
a6 a7 a5 a8 a4 a9 a3 · · ·
a8 a9 a7 a10 a6 a11 a5 · · ·
...

...
...

...
...

...
...


which is a two way infinite matrix and it is an upper triangular matrix if the
symbol φ is co-analytic. Also, for each non-negative integer n, it follows that

Vφ(e2n) = WPMφK(e2n) = WPMφ(en) = WTφ(en) = Bφ(en)

and

Vφ(e2n+1) = WPMφK(e2n+1) = WPMφ(e−n−1) = WPMφJ(en)

= WHφ(en) = Lφ(en).

This shows that the matrix of slant Toeplitz operator Bφ can be obtained by
deleting every odd column of the matrix of slant H-Toeplitz operator Vφ and
the matrix of slant Hankel operator Lφ can be obtained by deleting every even
column of the matrix of the operator Vφ. Hence, the (i, j)th entry of the matrix
of Vφ is given by:

ai,j =

{
a2i−n if j = 2n,

a2i+n+1 if j = 2n+ 1,

where n ∈ N ∪ {0}. This motivates us to define the slant H-Toeplitz matrix in
the following way:

Definition 2.3. A two way doubly infinite matrix (ai,j) is said to be a slant
H-Toeplitz matrix if it satisfies the following:

(2.2) ak,0 =

{
ak+j,4j for all j ≥ 0, and k ≥ 0,

ak−j,4j−1 for all j = 1, 2, 3, . . . , k − j ≥ 0 and k ≥ 1

and

(2.3) a0,2k = ai,2k+4i for all i ≥ 1 and k ≥ 1.
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It can be observed that an n× n slant H-Toeplitz matrix has 3n− 2 degree
of freedom rather than n2 and therefore for large n, it is comparatively easy
to solve the system of linear equations where the coefficient matrix is slant H-
Toeplitz matrix. The H-Toeplitz matrix give rises to slant Toeplitz and slant
Hankel operators that can be seen by the following theorem:

Theorem 2.4. If the matrix of a bounded linear operator A defined on H2 is
a slant H-Toeplitz matrix, then ACz2 is a slant Toeplitz operator and AMzCz2
is a slant Hankel operator.

Proof. Let A be a bounded linear operator on H2 such that its matrix (ai,j)
with respect to the orthonormal basis {en}n≥0 is a slant H-Toeplitz matrix
and therefore, it satisfies relations (2.2) and (2.3). Let (αi,j) be the matrix of
bounded linear operator ACz2 , defined on H2 with respect to the orthonormal
basis {en}n≥0. Then using the definition of slant H-Toeplitz matrix, we have

αi+1,j+2 =
〈
ACz2z

j+2, zi+1
〉

=
〈
Az2j+4, zi+1

〉
= ai+1,2j+4 = ai,2j

=
〈
Az2j , zi

〉
=
〈
ACz2z

j , zi
〉

= αi,j for all i, j ≥ 0.

Therefore, (αi,j) is a slant Toeplitz matrix and hence the operator ACz2 is a
slant Toeplitz operator. Next, let (βi,j) be the matrix of the bounded linear
operator AMzCz2 , defined on H2 with respect to the basis {en}n≥0. Then, by
the definition of slant H-Toeplitz matrix, it follows that

βi−1,j+2 =
〈
AMzCz2z

j+2, zi−1
〉

=
〈
Az2j+5, zi−1

〉
= ai−1,2j+5 = ai,2j+1

=
〈
Az2j+1, zi

〉
=
〈
AMzCz2z

j , zi
〉

= βi,j for all i ≥ 1, j ≥ 0.

Thus, the matrix (βi,j) is a slant Hankel matrix and hence the operator AMzCz2
is a slant Hankel operator. �

Corollary 2.5. If the matrix of a bounded linear operator A defined on H2 is
a slant H-Toeplitz matrix, then ACz2 = WTφ and AMzCz2 = WHφ for some
φ ∈ L∞.

Proof. Let A ∈ B(H2) be such that its matrix (ai,j) with respect to orthonor-
mal basis {en}n≥0 is a slant H-Toeplitz matrix. Therefore, by Theorem 2.4,
the operators ACz2 and AMzCz2 are slant Toeplitz operator and slant Han-
kel operator, respectively. Let (αi,j) and (βi,j) be the matrices of the oper-
ators ACz2 and AMzCz2 , respectively, with respect to the orthonormal basis
{en}n≥0 of H2. Then by the definition of slant H-Toeplitz matrix, it follows
that

αk,0 =
〈
WTφz

0, zk
〉

=
〈
ACz2z

0, zk
〉

=
〈
Az0, zk

〉
= ak,0

and

α0,j =
〈
WTφz

j , z0
〉

=
〈
ACz2z

j , z0
〉

=
〈
Az2j , z0

〉
= a0,2j .

Thus, for all k ≥ 0, j ≥ 1, it follows that αk,0 =
〈
φ, z2k

〉
= ak,0 and α0,j =〈

φ, z2j
〉

= a0,2j . Also by relation (2.2), αi,j =
〈
ACz2z

j , zi
〉

=
〈
Az2j , zi

〉
=
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ai,2j = a2i−j,0 = α2i−j . Now since AMzCz2 = WHφ, therefore, for k ≥ 0 and
by relation (2.2) it follows that

βk,0 =
〈
WHφz

0, zk
〉

=
〈
AMzCz2z

0, zk
〉

=
〈
Az, zk

〉
= ak,1 = ak+1,2.

Also,
〈
WHφz

0, zk
〉

=
〈
PMφJz

0, z2k
〉

=
〈
Mφz

−1, z2k
〉

=
〈
φ, z2k+1

〉
and so〈

φ, z2k+1
〉
= ak,1. Since,

〈
φ, z2k

〉
= ak,0 and

〈
φ, z2k+1

〉
= ak,1, therefore we

define the function φ as follows:

(2.4)
〈
φ, zk

〉
=


ak/2,0 k ≥ 0 and k is even,

a(k−1)/2,1 k > 0 and k is odd,

a0,−2k k ≤ −1.

Since A is a bounded linear operator on H2, therefore, the function φ ∈ L∞.
Hence, the operator ACz2 is a slant Toeplitz operator Bφ and the operator
AMzCz2 is a slant Hankel operator Sφ with φ defined by (2.4). Also,

βi,j =
〈
AMzCz2z

j , zi
〉

=
〈
Az2j+1, zi

〉
= ai,2j+1 = ai−1,2j+5 =

〈
AMzCz2z

j+2, zi−1
〉

= βi−1,j+2

for all i ≥ 1, j ≥ 0. �

Remark 2.6. From the matrix representation, given by the relations (2.2) and
(2.3) of slant H-Toeplitz operator Vφ with symbol φ ∈ L∞, it can be observed
that with respect to a suitable basis on the domain and range spaces for the
operator Vφ, the matrix of Vφ can be represented as the matrix whose columns
on the left side are of the matrix of Bφ and the columns on the right side are
of the matrix of Lφ. Therefore, with respect to above representation, we can
conclude that any slant H-Toeplitz operator is unitarily equivalent to a direct
sum of a slant Toeplitz operator and a slant Hankel operator.

For φ ∈ L∞, the adjoint V ∗φ of the operator Vφ on H2 is the operator
satisfying

V ∗φ = (WSφ)
∗

= (WPMφK)
∗

= K∗M∗φP
∗W ∗ = K∗Mφ̄W

∗.

If φ =
∑∞
n=−∞ anen ∈ L∞, then (i, j)th entry of the matrix of V ∗φ with respect

to orthonormal basis {en}n≥0 is given by〈
V ∗φ ej , ei

〉
=
〈
K∗M∗φPW

∗ej , ei
〉

=
〈
K∗Mφe2j , ei

〉
=
〈 ∞∑
n=−∞

ane2j−n,Kei

〉
=

{
a2j−m if i = 2m,

a2j+m+1 if i = 2m+ 1,
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where i, j and m are non-negative integers. Hence, the matrix of V ∗φ is given
by

V ∗φ =



a0 a2 a4 a6 a8 a10 a12 · · ·
a1 a3 a5 a7 a9 a11 a13 · · ·
a−1 a1 a3 a5 a7 a9 a11 · · ·
a2 a4 a6 a8 a10 a12 a14 · · ·
a−2 a0 a2 a4 a6 a8 a10 · · ·

...
...

...
...

...
...

...


.

Moreover, we have ‖V ∗φ f‖2 = ‖(WTφ)∗f‖2 + ‖(WHφ)∗f‖2 for each f ∈ H2.

Proposition 2.7. If φ ∈ L∞ is an inner function, then the operator V ∗φ is an
isometry.

Proof. If φ ∈ L∞ is an inner function, then |φ| = 1 a.e. on T. Then, for each
non-negative integer n and by the definition of operators Vφ and V ∗φ it follows

that VφV
∗
φ (en) = (WPMφK)

(
K∗Mφ̄PW

∗) (en) = WPMφ(KK∗)Mφ̄(e2n) =

WPM|φ|2(e2n) = WW ∗(en) = (en). Thus, VφV
∗
φ (en) = (en) for all n ≥ 0.

Hence, the operator V ∗φ is an isometry. �

The condition in the above theorem is only necessary but not sufficient as
shown in the following example.

Example 2.8. For φ(z) = (1 + z)/
√

2 ∈ L∞ such that z ∈ T, we have

VφV
∗
φ (en(z)) = WPMφMφ̄(zn) =

1√
2
WP

(
1 + z√

2

(
z2n + z2n−1

))
=

1

2
WP

(
z2n + z2n−1 + z2n+1 + z2n

)
= zn.

Therefore, VφV
∗
φ (en) = en for each non-negative integer n and hence V ∗φ is an

isometry, but φ is not an inner function.

Theorem 2.9. If φ =
∑∞
n=−∞ anen ∈ L∞ and the operator V ∗φ is an isometry

on H2, then
∑∞
n=−∞ |an|2 = 1.

Proof. If the operator V ∗φ is an isometry, then VφV
∗
φ = I which on using the def-

inition of Vφ implies that WT|φ|2W
∗ = WW ∗ or equivalently, W

(
I − T|φ|2

)
W ∗

= 0 and therefore we get that WT1−|φ|2W
∗ = 0. Thus, for m ≥ 0, it follows

that
〈
WT1−|φ|2W

∗em, em
〉

= 0, that is,
〈
(T1−|φ|2)e2m, e2m

〉
= 0 which gives〈

(1− |φ|2)e2m, e2m

〉
= 0 and so

〈
z2m, z2m

〉
−
〈
φ(z)φ(z)z2m, z2m

〉
= 0. There-

fore, on substituting the value of φ, we get that〈 ∞∑
n=−∞

anz
n+2m,

∞∑
k=−∞

akz
k+2m

〉
= 1

or, equivalently, we have
∑∞
n=−∞ an

∑∞
k=−∞ ak

〈
zn+2m, zk+2m

〉
= 1 for all

m ≥ 0. Hence, it follows that
∑∞
n=−∞ |an|2 = 1. �
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If φ ∈ L∞ is an inner function, then the operator Vφ being coisometry is
also a partial isometry and in the next result we have obtained the necessary
condition for Vφ to be partial isometry on H2.

Theorem 2.10. If φ ∈ L∞ and the operator Vφ is partial isometry, then(
WT1−|φ|2W

∗)WTφK = 0.

Proof. Let the operator Vφ be a partial isometry on H2. Therefore, Vφ =
VφV

∗
φ Vφ, that is, Vφ =

(
WT|φ|2W

∗)Vφ which further implies that(
I −WT|φ|2W

∗)Vφ = 0.

So,
(
WPM1W

∗ −WT|φ|2W
∗)WPMφK = 0, or equivalently,(

WT1−|φ|2W
∗)WPMφK = 0

and hence it follows that
(
WT1−|φ|2W

∗)WTφK = 0. �

Theorem 2.11. For φ ∈ L∞, the operator Vφ is a Hilbert-Schmidt operator if
and only if φ ≡ 0.

Proof. Clearly if φ ≡ 0, then the operator Vφ is a Hilbert-Schmidt operator.
Conversely, take φ =

∑∞
n=−∞ anen ∈ L∞ and assume that the operator Vφ is

a Hilbert-Schmidt operator. From the definitions of the operators W and K,
we have

∞∑
m=0

〈Vφem, Vφem〉

=

∞∑
m=0

〈Vφe2m, Vφe2m〉+

∞∑
m=0

〈Vφe2m+1, Vφe2m+1〉

=

∞∑
m=0

〈WPMφem,WPMφem〉+

∞∑
m=0

〈WPMφe−m−1,WPMφe−m−1〉

=

∞∑
m=0

〈
WP

∞∑
n=−∞

anen+m,WP

∞∑
n=−∞

anen+m

〉
+

∞∑
m=0

〈
WP

∞∑
n=−∞

anen−m−1,WP

∞∑
n=−∞

anen−m−1

〉
=

∞∑
m=0

〈 ∞∑
n=0

a2n−men,

∞∑
j=0

a2j−mej

〉
+

∞∑
m=0

〈 ∞∑
n=0

a2n+m+1en,

∞∑
j=0

a2j+m+1ej

〉
=

∞∑
m=0

( ∞∑
n=0

|a2n−m|2
)

+

∞∑
m=0

( ∞∑
n=0

|a2n+m+1|2
)
.
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Since the operator Vφ is Hilbert-Schmidt, therefore it follows that

∞∑
m=0

‖Vφem‖2 =

∞∑
m=0

〈Vφem, Vφem〉 <∞.

Hence, this implies that
∞∑
m=0

( ∞∑
n=0

|a2n−m|2
)

+

∞∑
m=0

( ∞∑
n=0

|a2n+m+1|2
)
<∞

which holds if and only if |an| = 0 for each n. Thus, φ ≡ 0. �

It is known that the only compact slant Toelitz operators on the Hardy space
is the zero operator [13]. Following theorem shows that the same holds true
for slant H-Toeplitz operators.

Theorem 2.12. The slant H-Toeplitz operator Vφ is compact if and only if
φ ≡ 0.

Proof. Let φ be a bounded measurable function and Vφ be a slant H-Toeplitz
operator with the matrix (ai,j) with respect to orthonormal basis {en}n≥0 sat-
isfying relations (2.2) and (2.3). Let Vφ be a compact operator. Since en con-
verges to 0 weakly and therefore ‖Vφen‖ → 0. This implies that ‖WTφen‖ → 0
and ‖WHφen‖ → 0. This further implies that 〈φ, en〉 = 0 for each n ∈ Z.
Hence, φ ≡ 0, that is, Vφ = 0. Thus, the only compact slant H-Toeplitz
operator is the zero operator. �

The slant H- Toeplitz operator Vφ is a non-normal operator, that is, VφV
∗
φ 6=

V ∗φ Vφ. Moreover, in the following theorem we prove that zero operator is the
only hyponormal slant H-Toeplitz operator.

Theorem 2.13. For φ ∈ L∞, the operator Vφ is hyponormal if and only if
φ ≡ 0.

Proof. Clearly for φ ≡ 0, the operator Vφ is hyponormal on H2. Conversely,
assume that the operator Vφ is hyponormal on H2 with the symbol φ =∑∞
n=−∞ anen. Then from hyponormality of Vφ, it follows that

(2.5) ‖Vφ∗f‖2 ≤ ‖Vφf‖2 for all f ∈ H2.

In particular for f(z) = e0(z) in (2.5), we have ‖V ∗φ e0‖2 ≤ ‖Vφe0‖2, that is,∥∥K∗ (∑∞n=−∞ a−nen
)∥∥2 ≤ ‖W

∑∞
n=0 anen‖

2
which further implies that∥∥∥ ∞∑

n=0

a−ne2n +

∞∑
n=0

an+1e2n+1

∥∥∥2

≤
∥∥∥ ∞∑
n=0

a2nen

∥∥∥2

.

Therefore, on expanding it follows that
∞∑
n=0

|a−n|2 +

∞∑
n=0

|an+1|2 ≤
∞∑
n=0

|a2n|2
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which implies that
∑∞
n=1 |a−n|2 +

∑∞
n=0 |a2n+1|2 ≤ 0. So, this gives that

a−n = 0 for n ≥ 1 and a2n+1 = 0 for n ≥ 0. Similarly on taking f(z) =
e1(z) = z in (2.5), it follows that ‖V ∗φ e1‖2 ≤ ‖Vφe1‖2. Now from the definitions

of operators Vφ and V ∗φ we have
∥∥∑∞

n=−∞ an+3e2n+1

∥∥2 ≤ ‖
∑∞
n=0 a2n+1en‖

2
,

or equivalently,
∑∞
n=−∞ |an+3|2 ≤

∑∞
n=0 |a2n+1|2, that is,

∑∞
n=−∞ |a2n|2 ≤ 0.

Therefore, |a2n| = 0 for each n and hence we have that an = 0 for each n ∈ Z.
Thus, it follows that φ ≡ 0. �

It is evident that every isometry operator is hyponormal, therefore it follows
that a slant H-Toeplitz operator can not be isometry.

3. Characterizations of slant H-Toeplitz operator

Let S ∈ B(H2) be a forward shift operator, that is, S(f(z)) = z(f(z)) for all
f ∈ H2, z ∈ T and the operator S∗ denotes the adjoint of S. Let the operator
U ∈ B(L2) be the multiplication operator with symbol z.

Theorem 3.1. If A is a bounded linear operator on H2 whose matrix with
respect to orthonormal basis {en}n≥0 is a slant H-Toeplitz matrix, then for
each non-negative integer m, there exist a bounded linear operator Am defined
from H2 to L2 which satisfies the following:

(a) AmCz2 = U∗mACz2S
2m.

(b) S∗AmMz3Cz4 = AMz3Cz4S.
(c) S∗Amz

0 = AMz3z
0.

Proof. Let A ∈ B(H2) has a slant H-Toeplitz matrix (αi,j) with respect to the
orthonormal basis {en}n≥0. For each non-negative integer m, define a bounded
linear operator Am from H2 to H2 ∪ span{e−1, e−2, e−3, . . . , e−m} ⊂ L2 such
that its matrix satisfies the following relation:

(3.1) αk,0 =

{
αk+j,4j for j ≥ 0 and k ≥ −m,
αk−j,4j−1 for j = 1, 2, 3, . . . and k − j ≥ −m

and

(3.2) α−m,2k = ai,2k+4i for i ≥ −m and k ≥ 1.

Using the matrix representation of operators Am, it follows that

(3.3) αq,2p = αq+j,2p+4j for all p, q, j ≥ 0.

Therefore, in particular for j = m ≥ 1 by equation (3.3), it follows that

(3.4) αq,2p = αq+m,2p+4m for all p, q ≥ 0.

Then, by equation (3.4), we obtain

〈Ame2p, eq〉 = 〈Ae2p+2m, eq+m〉 ,
or equivalently,

〈AmCz2ep, eq〉 =
〈
U∗ACz2S

2mep, eq
〉
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for all p ≥ 0, m ≥ 1 and q ≥ −m and hence AmCz2 = U∗mACz2S
2m. Since,

αk,0 = αk−j,4j−1 for all j ≥ 1 and k − j ≥ −m, therefore it follows that
αk+r+2,0 = αk+r+2−j,4j−1 for j ≥ 1, k ≥ j −m and r ≥ 0. In particular, for
j = r + 1, r + 2, we see that

αk+1,4r+3 = αk,4r+7 for all r ≥ 0, k ≥ 0.

Therefore, 〈Ame4r+3, ek+1〉 = 〈Ae4r+7, ek〉, or equivalently, we get that

〈S∗AmMz3Cz4er, ek〉 = 〈AMz3Cz4Ser, ek〉 for each r, k ≥ 0.

Hence, it follows that S∗AmMz3Cz4 = AMz3Cz4S. Again by the definition of
matrix (αi,j), it follows that αk+1,0 = αk,3 for all k ≥ 0. This implies that
〈Ame0, ek+1〉 = 〈Ae3, ek〉, or equivalently, 〈S∗Ame0, ek〉 = 〈AMz3e0, ek〉 for all
k ≥ 0. Thus, it gives S∗Amz

0 = AMz3z
0. �

In the above theorem, for each fixed non-negative integer m, the (i, j)th

entry of the matrix of the operator Am is independent of m, which is shown in
the following lemma:

Lemma 3.2. Let m be a fixed non-negative integer. Then for all j ≥ 0 and
i ≥ −m, 〈Amej , ei〉 is independent of m.

Proof. Let (αi,j) be the matrix of Am with respect to the orthonormal basis
{en}n≥0 satisfying relations (3.1) and (3.2). For 0 > i > −m, using the matrix
definition of operator Am, we get that

〈Ame4p, ei〉 = α0,4p+4k =
〈
Ae4(p+k), e0

〉
where i+ k = 0

and this is true for each non-negative integer p. Also, for p ≥ 1, we have
〈Ame4p−1, ei〉 = αi+p,0 = 〈Ae0, ei+p〉 . For non-negative integers i and j and by
using the relation AmCz2 = U∗mACz2S

2m, it follows that

〈AmCz2ej , ei〉 =
〈
U∗mACz2S

2mej , ei
〉

=
〈
ACz2S

2m, Smei
〉

=
〈
S∗mACz2S

2mej , ei
〉

= 〈ACz2ej , ei〉 .

Also, the relation S∗AmMz3Cz4 = AMz3Cz4S implies that

〈S∗AmMz3Cz4ej , ei〉 = 〈AMz3Cz4Sej , ei〉

which gives that 〈Ae4j+7, ei〉 = 〈Ae4j+3, ei+1〉. Moreover, from the definition of
Am, we have 〈S∗AmMz3Cz4ej , ei〉 = 〈Ame4j+3, ei+m〉 = 〈Ae4j+3, ei+1〉 . Again
the relation S∗Amz

0 = AMz3z
0 implies that 〈S∗Ame0, ei〉 = 〈AMz3e0, ei〉 =

αi,3 = αi+1,0 = 〈Ae0, ei+1〉 and also 〈S∗Ame0, ei〉 = 〈Ame0, ei+1〉. Therefore,
for all non-negative integers i and j we get that 〈Amej , ei〉 = 〈Aej , ei〉. Hence,
for all j ≥ 0 and i ≥ −m, 〈Amej , ei〉 is independent of m. �
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Example 3.3. Let A be a bounded linear operator on H2 whose matrix (ai,j)
with respect to the orthonormal basis {en}n≥0 is a slant H-Toeplitz matrix and
satisfies the relations (2.2) and (2.3). Then the matrices of the operators A1

and A2 defined in Theorem 3.1, are given by

A1 =



a−2 a−1 a−3 a0 a−4 a1 a−5 · · ·
a0 a1 a−1 a2 a−2 a3 a−3 · · ·
a2 a3 a1 a4 a0 a5 a−1 · · ·
a4 a5 a3 a6 a2 a7 a1 · · ·
a6 a7 a5 a8 a4 a9 a3 · · ·
a8 a9 a7 a10 a6 a11 a5 · · ·
...

...
...

...
...

...
...


and

A2 =



a−4 a−3 a−5 a−2 a−6 a−1 a−7 · · ·
a−2 a−1 a−3 a0 a−4 a1 a−5 · · ·
a0 a1 a−1 a2 a−2 a3 a−3 · · ·
a2 a3 a1 a4 a0 a5 a−1 · · ·
a4 a5 a3 a6 a2 a7 a1 · · ·
a6 a7 a5 a8 a4 a9 a3 · · ·
a8 a9 a7 a10 a6 a11 a5 · · ·
...

...
...

...
...

...
...


.

Similarly, we can obtain the matrix representation for other operators Am for
m > 2 and clearly all these operators satisfying the conditions given in Theorem
3.1.

In the following theorem we give the characterization for slant H-Toeplitz
operators.

Theorem 3.4. A necessary and sufficient condition for an operator A ∈ B(H2)
to be a slant H-Toeplitz operator is that its matrix with respect to the orthonor-
mal basis {en}n≥0 is the slant H-Toeplitz matrix.

Proof. It is clear that every slant H-Toeplitz operator defined on H2 has a
slant H-Toeplitz matrix with respect to the orthonormal basis {en}n≥0 of H2.
Conversely, assume that A is a bounded linear operator on H2 whose matrix
with respect to the orthonormal basis {en}n≥0 is a slant H-Toeplitz matrix. So,
we claim that A is a slant H-Toeplitz operator. For each non-negative integer
m, consider a bounded linear operator Am defined on H2 to L2 such that its
matrix satisfies the relations (3.1) and (3.2) given in the Theorem 3.1. Then,
the operators Am satisfies the following:

(a) AmCz2 = U∗mACz2S
2m,

(b) S∗AmMz3Cz4 = AMz3Cz4S,
(c) S∗Amz

0 = AMz3z
0.
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Moreover, for non-negative integers i and j, we have
〈
Amz

j , zi
〉

=
〈
Azj , zi

〉
.

If p and q are finite linear combinations of zi for i ≥ 0, then the sequence
{〈Amp, q〉} is convergent. Therefore, the sequence {Am} of operator on H2 is
weakly convergent to a bounded linear operator say, B, on H2. Then for all
i, j ≥ 0, it follows that〈

PBzj , zi
〉

=
〈
Bzj , zi

〉
= lim
m→∞

〈
Amz

j , zi
〉

=
〈
Azj , zi

〉
= ai,j

and if f and g are in H2, then we have

〈PBf, g〉 = lim
m→∞

〈Amf, g〉 = lim
m→∞

〈Af, g〉 = 〈Af, g〉 .

Therefore, PBf = Af for each f ∈ H2. Hence, it follows that operator A is
a slant H-Toeplitz operator on H2. Fourier coefficients of φ that induces the
operator A from its matrix are given by

〈
φ, zk

〉
=


ak/2,0 k ≥ 0 and k is even,

a(k−1)/2,1 k > 0 and k is odd,

a0,−2k k ≤ −1.

For f(z) = zn ∈ H2, ACz2f(z) = Az2n and AMzCz2 = Az2n+1. Since the
operators ACz2 and AMzCz2 are slant Toeplitz and slant Hankel operators,
respectively, therefore ACz2 = WTφ and AMzCz2 = WHφ. Then for each
function f1(z2) ∈ H2, we have

ACz2(f1(z)) = WTφf1(z) = WPMφK(f1(z2)) = Vφ(f1(z2))

and for each f2(z2) ∈ H2, we obtain

AMzCz2(f2(z)) = WHφ(f2(z)) = WPMφJ(f2(z)) = WPMφ(z−1f2(z−1))

= WPMφK(zf2(z2)) = Vφ(zf2(z2)).

If h(z) ∈ H2, then h(z) = h1(z2) + zh2(z2). Moreover, we have

A(h(z)) = A(h1(z2) + zh2(z2)) = A(h1(z2)) +A(zh2(z2))

= ACz2(h1(z)) +AMzCz2(h2(z))

= Vφ((h1(z2)) + Vφ((zh2(z2))

= Vφ(h1(z2) + zh2(z2)) = Vφ(h(z))

which is true for every h(z) ∈ H2. Hence, the operator A is a slant H-Toeplitz
operator with symbol φ. �

In the next theorem, we give another characterization for slant H-Toeplitz
operators.

Theorem 3.5. A bounded linear operator A on H2 is a slant H-Toeplitz op-
erator if and only if satisfies

(a) ACz2 = S∗ACz2S
2,

(b) S∗AMz3Cz4 = AMz3Cz4S,
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(c) S∗Az0 = AMz3z
0.

Proof. Let the operator A ∈ B(H2) satisfies the conditions (a), (b) and (c).
Then from (a) and (b), it follows that ACz2 is a slant Toeplitz operator and
AMzCz2 is a slant Hankel operator. Also if f ∈ H2, then

S∗ACz2S
2(f(z)) = ACz2(f(z))

and

S∗AMz3Cz4(f(z)) = AMz3Cz4S(f(z)).

This gives that,

(3.5) S∗A(z4f(z2)) = A(f(z2)) and S∗A(z3f(z4)) = A(z7f(z4)).

This is true for each functions f(z2), f(z4) ∈ H2. Therefore, in particular for
f(z2) = z0, z2, z4, z6, . . . and f(z4) = z0, z4, z8, z12, . . . using equation (3.5),
we obtain the following relations:

S∗A(z2n+4) = A(z2n) and S∗A(z4n+3) = A(z4n+7) for n ≥ 0.(3.6)

Let (ai,j) be the matrix of the bounded linear operator A with respect to
orthonormal basis {en}n≥0. Then, for all k ≥ 0 and by the relation (3.6), we
have

ak,0 =
〈
Az0, zk

〉
=
〈
S∗Az4, zk

〉
=
〈
Az4, zk+1

〉
= ak+1,4

=
〈
S∗Az8, zk+1

〉
=
〈
Az8, zk+2

〉
= ak+2,8

=
〈
S∗Az12, zk+2

〉
=
〈
Az12, zk+3

〉
= ak+3,12

and so on. On continuing in this manner, for j ≥ 1 and k ≥ 0, we obtain that
ak,0 = ak+j,4j . Again for each k ≥ 1 and by the relation (3.6), it follows that

ak,0 =
〈
Az0, zk

〉
=
〈
S∗Az0, zk−1

〉
=
〈
AMz3z

0, zk−1
〉

= ak−1,3

=
〈
S∗Az3, zk−2

〉
=
〈
Az7, zk−2

〉
= ak−2,7

=
〈
S∗Az7, zk−3

〉
=
〈
Az11, zk−3

〉
= ak−3,11

and so on. Again on continuing the same manner it follows that for all k ≥ 1,
ak,0 = ak−1,3 = ak−2,7 = ak−3,11 = · · · = a0,4k−1. Therefore, for each k ≥
1 and for j = 1, 2, 3, . . . , k − j ≥ 0, it follows that ak,0 = ak−j,4j−1. Again for
k ≥ 0 and from the relation (3.6), it follows that

a0,2k =
〈
Az2k, z0

〉
=
〈
S∗Az2k+4, z0

〉
=
〈
Az2k+4, z1

〉
= a1,2k+4

=
〈
S∗Az2k+8, z1

〉
=
〈
Az2k+8, z2

〉
= a2,2k+8

=
〈
S∗Az2k+12, z2

〉
=
〈
Az2k+12, z3

〉
= a3,2k+12

and so on. Therefore, on continuing the same process, for all k ≥ 0 and i ≥ 1 it
follows that a0,2k = ai,2k+4i. Since the matrix (ai,j) satisfies the relations (2.2)
and (2.3), therefore the matrix (ai,j) is a slant H-Toeplitz matrix. Thus, the
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operator A is a slant H-Toeplitz operator on H2 with symbol φ whose Fourier
coefficients are given by

〈
φ, zk

〉
=


ak/2,0 k ≥ 0 and k is even,

a(k−1)/2,1 k > 0 and k is odd,

a0,−2k k ≤ −1.

Conversely, assume that the operator A is a slant H-Toeplitz operator on H2.
Then, A = Vφ for some non-zero φ ∈ L∞ and for each f ∈ H2, we have

ACz2(f(z)) = VφCz2(f(z)) = WPMφK(f(z2)) = WTφ(f(z)).

Hence, ACz2 is a slant Toeplitz operator and therefore we get that S∗ACz2S
2 =

ACz2 . Also for each f ∈ H2, it follows that

AMzCz2(f(z)) = Vφ(zf(z2)) = WPMφK(zf(z2)) = WPMφ(z−1f(z−1))

= WPMφJ(f(z)) = WHφ(f(z)).

Therefore, the operator AMzCz2 is a slant Hankel operator and hence
S∗AMz3Cz4 = AMz3Cz4S. Again if φ(z) =

∑∞
n=−∞ anz

n, then the opera-
tor A satisfies the following:

S∗A(z0) = S∗Vφ(z0) = S∗WPφ(z) = S∗
∞∑
n=0

a2nz
n =

∞∑
n=0

a2n+2z
n

and

AMz3(z0) = Vφ(z3) = WPMφK(z3) = WPφ(z−2) =

∞∑
n=0

a2n+2z
n.

Therefore, AMz3(z0) = S∗A(z0). Thus, every slant H-Toeplitz operator satis-
fies the above three conditions of the theorem. �

In the following theorem, we have shown that there does not exist any non-
zero self-adjoint slant H-Toeplitz operator on H2.

Theorem 3.6. The slant H-Toeplitz operator Vφ with the symbol φ is self
adjoint if and only if φ ≡ 0.

Proof. If φ ≡ 0, then result is obvious. Conversely, suppose that the operator
Vφ for some φ ∈ L∞, is self-adjoint on H2. Since, Vφ = V ∗φ , therefore by
Theorem 3.5, the operator V ∗φ satisfies the following:

(a) S∗V ∗φCz2S
2 = V ∗φCz2 .

(b) S∗V ∗φMz3Cz4 = V ∗φMz3Cz4S.

(c) S∗V ∗φ z
0 = V ∗φMz3z

0.

For φ(z) =
∑∞
n=−∞ anz

n, the relation (c) implies that (S∗K∗Mφ̄)W ∗(1) =

K∗Mφ̄W
∗(z3), or equivalently, S∗K∗

(∑∞
n=−∞ anz̄

n
)

=K∗
(∑∞

n=−∞ anz̄
n+6
)
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which gives that

S∗
( ∞∑
n=0

a−nz
2n +

∞∑
n=0

an+1z
2n+1

)
= K∗

( ∞∑
n=0

a−n−6z
n +

∞∑
n=0

an−5z
−n−1

)
and this gives

∞∑
n=1

a−nz
2n +

∞∑
n=1

an+1z
2n+1 =

∞∑
n=0

a−n−6z
2n +

∞∑
n=0

an−5z
2n+1.

Therefore, on comparing the coefficients we get a−6 = 0, a−5 = 0 and a−n =
a−n−6, an+1 = an−5 for n ≥ 1. Now since an → 0 as n → ∞, therefore this
implies that an = 0 for each n and hence φ ≡ 0. �

Next we show that a non-zero slant Toeplitz operator can not be a slant
H-Toeplitz operator on H2.

Theorem 3.7. A slant Toeplitz operator Bφ is a slant H-Toeplitz operator if
and only if φ ≡ 0.

Proof. Clearly if φ ≡ 0, then the result is obvious. Conversely, assume that
the slant Toeplitz operator Bφ is a slant H-Toeplitz operator on H2 for some
φ ∈ L∞. Then, by using Theorem 3.5, the operator Bφ satisfies the following:

(a) S∗BφCz2S
2 = BφCz2 .

(b) S∗BφMz3Cz4 = BφMz3Cz4S.
(c) S∗Bφz

0 = BφMz3z
0.

Take φ(z) =
∑∞
n=−∞ anz

n. Since, S∗BφCz2S
2(zm) = S∗Bφ(z2m+4) for all

m ≥ 0. Therefore, on using condition (a), it follows that
〈
S∗BφCz2S

2zm, zj
〉

=〈
BφCz2z

m, zj
〉
. This gives

〈
Bφz

2m+4, zj+1
〉

=
〈
Bφz

2m, zj
〉

which further im-
plies that 〈

WP
( ∞∑
n=−∞

anz
2m+n+4

)
, zj+1

〉
=
〈
WP

( ∞∑
n=−∞

anz
n+2m

)
, zj
〉

or, equivalently,
〈 ∞∑
n=−2m−4

anz
2m+n+4, z2j+2

〉
=
〈 ∞∑
n=−2m

anz
n+2m, z2j

〉
.

Therefore, a2j−2m−2 = a2j−2m for all m, j ≥ 0. Now on substituting m, j =
0, 1, 2, 3, . . . , we get that a0 = a2n for all integer n. Since an → 0 as n → ∞,
therefore for each integer n, we get that a2n = 0. Now for m ≥ 0, we have
S∗BφMz3Cz4(zm) = S∗BφMz3(z4m) = S∗Bφ(z4m+3) and BφMz3Cz4S(zm) =
BφMz3(z4m+4) = Bφ(z4m+7). Then, from the relation (b) it follows〈

S∗BφMz3Cz4z
m, zj

〉
=
〈
BφMz3Cz4Sz

m, zj
〉
,

that is,
〈
S∗Bφz

4m+3, zj
〉

=
〈
Bφz

4m+7, zj
〉
. This further implies that〈

WP
( ∞∑
n=−∞

anz
4m+n+3

)
, zj+1

〉
=
〈
WP

( ∞∑
n=−∞

anz
n+4m+7

)
, zj
〉

or,
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equivalently,
〈 ∞∑
n=−4m−3

anz
n+4m+3, z2j+2

〉
=
〈 ∞∑
n=−4m−7

anz
n+4m+7, z2j

〉
.

Thus, it gives that a2j−4m−1 = a2j−4m−7 for all j,m ≥ 0 and this implies that
a1 = a2n+1 for all integers n. Since an → 0 as n→∞, therefore it follows that
a2n+1 = 0 for all integers n and hence φ ≡ 0. �

Theorem 3.8. If a slant Hankel operator Lφ is a slant H-Toeplitz operator on
H2, then φ ∈ (z + z3H∞)⊥, where (z + z3H∞) = {z + z3ψ : ψ ∈ H∞}.

Proof. Let the operator Lφ = WHφ be a slant H-Toeplitz operator on H2.
Then, by Theorem 3.5, the operator WHφ satisfies the following:

(a) S∗WHφCz2S
2 = WHφCz2 .

(b) S∗WHφMz3Cz4 = WHφMz3Cz4S.
(c) S∗WHφz

0 = WHφMz3z
0.

Take φ(z) =
∑∞
n=−∞ anz

n ∈ L∞. On using the relation (a), for each non-

negative integersm and j, we obtain
〈
S∗WHφCz2S

2zm, zj
〉

=
〈
WHφCz2z

m, zj
〉

which implies that
〈
Hφz

2(m+2), z2(j+1)
〉

=
〈
Hφz

2m, z2j
〉
. So, from the matrix

representation of the operator Hφ it follows that

a2m+2j+7 = a2m+2j+1 for all m, j ≥ 0.(3.7)

Again on using the relation (b), it follows that〈
S∗WHφMz3Cz4z

m, zj
〉

=
〈
WHφMz3Cz4Sz

m, zj
〉

which implies that〈
Hφz

4m+3, z2(j+1)
〉

=
〈
Hφz

4m+7, z2j
〉
.

Using matrix representation of the operator Hφ, the above condition is equiv-
alent to following:

(3.8) a4m+2j+6 = a4m+2j+8 for all m, j ≥ 0.

Moreover, from the relation (c), it follows that〈
WHφMz3z

0, zj
〉

=
〈
S∗WHφz

0, zj
〉

and then
〈
Hφz

3, z2j
〉

=
〈
Hφz

0, z2(j+1)
〉
. Therefore, using the matrix represen-

tation of the operator Hφ, we obtain following relation:

a2j+4 = a2j+3 for all j ≥ 0.(3.9)

On substituting m, j = 0, 1, 2, . . . in equations (3.7), (3.8) and (3.9), we obtain

a2k−1 = a2k+5, a2k+1 = a2k+2 and a2k+4 = a2k+6, k ∈ N.

This implies that a1 = an for each n ≥ 3. Since an → 0 as n→∞, we get that
φ(z) =

∑0
n=−∞ anz

n + a2z
2. Hence, φ ∈ (z + z3H∞)⊥. �
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We can extend the notion of slant H-Toeplitz operator to the space L2

by defining the operator V̆φ : L2 −→ L2 such that V̆φ = WMφK, where
K : L2 −→ L2 defined as Ke2n = en, Ke2n+1 = e−n−1 and W : L2 −→ L2

as We2n = en, We2n+1 = 0 for each integer n. The same techniques can be

applied to prove the results for V̆φ.
The notion of slant H-Toeplitz operator on H2 can be further extended to

generalised slant H-Toeplitz operators, which can be defined as the operator
V kφ ∈ B(H2) with the symbol φ ∈ L∞ by V kφ (f) = WkPMφK(f) for each f in

H2 and k ≥ 2, where the operator Wk ∈ B(L2) is given by

Wk(en) =

{
en

k
, if k divides n,

0, otherwise

for each integer n. Clearly, for k = 2, the operator V kφ is same as the slant
H-Toeplitz operator Vφ. Moreover, results for the operator Vφ can be extended
for the operator V kφ .
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