MATRICES OF TOEPLITZ OPERATORS ON HARDY SPACES OVER BOUNDED DOMAINS

Young-Bok Chung

Abstract

We compute explicitly the matrix represented by the Toeplitz operator on the Hardy space over a smoothly finitely connected bounded domain in the plane with respect to special orthonormal bases consisting of the classical kernel functions for the space of square integrable functions and for the Hardy space. The Fourier coefficients of the symbol of the Toeplitz operator are obtained from zeroth row vectors and zeroth column vectors of the matrix. And we also find some condition for the product of two Toeplitz operators to be a Toeplitz operator in terms of matrices.

1. Introduction

One of the reasons that theory about Toeplitz operators on the Hardy space over the unit disc U has been well-developed so far is that the set $\mathcal{A}=\left\{z^{k} \mid k \in \mathbb{Z}\right\}$ and the subset $\mathcal{B}=\left\{z^{k} \mid k \geq 0\right\}$ of monomials are orthonormal bases for the L^{2} space $L^{2}(b U)$ and the Hardy space $H^{2}(b U)$ respectively under the normalized Lebesgue measure. In particular Brown and Halmos classified Toeplitz operators completely in terms of Toeplitz matrices in the case of the unit disc (See [4]). When $\varphi \in L^{\infty}(b U)$ is the symbol of the Toeplitz operator T_{φ} on $H^{2}(b U)$ represented by the Fourier series $\varphi(z)=\sum_{k=-\infty}^{\infty} \alpha_{k} z^{k}$ with $\alpha_{k}=\left\langle\varphi, z^{k}\right\rangle$, the matrix $\left[T_{\varphi}\right]$ of T_{φ} with respect to the orthonormal basis \mathcal{B} is easily formulated as the identity

$$
\left[T_{\varphi}\right]_{m l}=\alpha_{m-l}
$$

For general (even simply connected) domains, computation of the matrix is not that simple. The author in [5], for any C^{∞} smoothly finitely connected bounded domain Ω, constructed a corresponding orthonormal basis \mathcal{A}_{Ω} for $L^{2}(b \Omega)$ explicitly which consists of the Szegő kernel, the Garabedian kernel and the Ahlfors map. In this case, the matrix $\left[T_{\varphi}\right]$ with respect to the basis \mathcal{A}_{Ω} turned out to be a Toeplitz matrix of order n where n is the finite connectivity of Ω. However recapturing the Fourier coefficients of the symbol φ from the

[^0]matrix $\left[T_{\varphi}\right]$ is very difficult in general unlike the unit disc. On the other hand, the product of two Toeplitz operators is not a Toeplitz operator in general even in the unit disc and in fact such a problem depends heavily on symbols .

In this paper, we compute the matrix $\left[T_{\varphi}\right]$ over a bounded domain and expand each entry of the matrix explicitly as an infinite series whose summation runs from $-\infty$ to a specified number so that its corresponding term is non-zero possibly, in order to get a key relation between the symbol and the matrix. It will then turn out that the 0 -th row vector and the 0 -th column vector of the matrix represent all Fourier coefficients of the symbol of the Toeplitz operator. In the final section we find a necessary condition for the product $T_{\varphi} T_{\psi}$ of two Toeplitz operators to be a Toeplitz operator in terms of matrices and this condition will imply, for the case of the unit disc, that the former symbol ψ becomes analytic and the latter symbol φ becomes co-analytic as we know.

2. Preliminaries and notes

Throughout the paper, we assume, unless otherwise specified, that Ω is a finitely connected bounded domain in the plane with C^{∞} smooth boundary and T is the unit tangent vector function on $b \Omega$ pointing in the direction of the standard orientation of $b \Omega$.

Let $L^{2}(b \Omega)$ be the space of square integrable functions on $b \Omega$ with the inner product defined by

$$
\langle u, v\rangle=\int_{b \Omega} u \bar{v} d s
$$

where $d s$ is the differential element of arc length on the boundary $b \Omega$ of Ω. Let $H^{2}(b \Omega)$ denote the space of holomorphic functions on Ω with L^{2}-boundary values in $b \Omega$ which is called the classical Hardy space. Since $H^{2}(b \Omega)$ is a closed subspace of $L^{2}(b \Omega)$, there exists the orthogonal projection of $L^{2}(b \Omega)$ onto $H^{2}(b \Omega)$ called the Szegő projection which is denoted by

$$
P: L^{2}(b \Omega) \rightarrow H^{2}(b \Omega)
$$

Let $S(z, w)$ be the kernel for the Szegő projection which is called the Szegő kernel that has the reproducing property

$$
P u(a)=\langle u, S(\cdot, a)\rangle=\int_{b \Omega} S(a, z) u(z) d s_{z}
$$

for $u \in L^{2}(b \Omega)$ and for $a \in \Omega$.
Let $a \in \Omega$ be fixed. Then it is easy to see from the Cauchy integral formula that

$$
S(z, a)=P\left(C_{a}\right)(z)
$$

where $C_{a}(z)=\overline{\frac{1}{2 \pi i} \frac{T(z)}{z-a}}$ is the Cauchy kernel (where "bar" means the complex conjugate). We need another function $G(z, a)$ which is called the Garabedian
kernel defined by

$$
G(z, a)=\frac{1}{2 \pi(z-a)}+P\left(\overline{i C_{a} T}\right)(z)
$$

In this paper we often use the notations $S_{a}(z)=S(z, a)$ and $G_{a}(z)=G(z, a)$ for convenience when the functions $S(z, a)$ and $G(z, a)$ of two variables z and a are thought of functions of the first variable z for the second variable a fixed.

There are many important (but well-known) properties of the Szegő kernel and the Garabedian kernel to which are often referred in this article and so we list some of them. These properties can be found in [1] and [2]. For $a \in \Omega$ fixed, S_{a} is a holomorphic function in $H^{2}(b \Omega)$ and for $z \in \Omega$ fixed, $S(z, a)$ is anti-holomorphic in $a \in \Omega$. The function $S(z, a)$ is a C^{∞} smooth function up to $\bar{\Omega} \times \bar{\Omega}$ minus the diagonal of the boundary $b \Omega$. For fixed $a \in \Omega, G(z, a)$ is a meromorphic function on Ω with a single simple pole at $z=a$ having residue $\frac{1}{2 \pi}$ which extends C^{∞} smoothly up to the boundary of Ω. Note that $G(z, a)$ never vanishes for all $(z, a) \in \bar{\Omega} \times \Omega$ with $z \neq a$. For a and b in Ω with $a \neq b, S(a, b)=\overline{S(b, a)}$ and $G(a, b)=-G(b, a)$. One of the most important properties about the Szegő kernel and the Garabedian kernel with which two kernel functions are interchangeable each other on the boundary is the identity

$$
\begin{equation*}
G(z, a)=i \overline{S(z, a)} \overline{T(z)}, \quad(z, a) \in \mathrm{b} \Omega \times \Omega \tag{2.1}
\end{equation*}
$$

Now in order to construct an orthonormal basis for L^{2}-space, we introduce a conformal map which plays a fundamental role such as the identity function on the unit disc. Suppose that Ω is n-connected and let a be in Ω. The function f_{a} defined on Ω by

$$
f_{a}(z)=\frac{S(z, a)}{G(z, a)}
$$

is an n to 1 proper holomorphic function mapping Ω onto the unit disc U which is called the Ahlfors map associated to the pair (Ω, a) (see [6]). The Ahlfors map f_{a} satisfies the properties $f_{a}(a)=0, f_{a}^{\prime}(a)>0$ solving the extremal problem of maximizing $h^{\prime}(a)$ among all holomorphic functions h mapping Ω into the unit disc making $h^{\prime}(a)$ real valued. f_{a} has n zeroes in Ω and in fact, it turned out that for all but finitely many points a of Ω, all other $n-1$ zeroes of f_{a} become simple zeroes. Since $G(z, a)$ never vanishes in $\bar{\Omega}$ as a function of z for fixed a, all other $n-1$ zeroes are given by zeroes of S_{a}. (Refer to [2], [3]). For $a \in \Omega$ fixed, let $a=a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$ be the zeroes of f_{a}. When $n=1$, i.e., if Ω is a simply connected domain, the function f_{a} is just the Riemann mapping function associated to (Ω, a).

For $\varphi \in L^{\infty}(b \Omega)$, the operator L_{φ} defined on $L^{2}(b \Omega)$ by

$$
L_{\varphi}(u)=\varphi u, \quad u \in L^{2}(b \Omega) .
$$

is called the Laurent operator with symbol φ and the operator T_{φ} defined on $H^{2}(b \Omega)$ by

$$
T_{\varphi}(h)=P(\varphi h), \quad h \in H^{2}(b \Omega) .
$$

is called the Toeplitz operator with symbol φ. Like the unit disc case, it is easy to see that $T_{\varphi}^{*}=T_{\bar{\varphi}}$ and $T_{\alpha_{1} \varphi+\alpha_{2} \psi}=\alpha_{1} T_{\varphi}+\alpha_{2} T_{\psi}$ for constants α_{1}, α_{2} and for $\varphi, \psi \in L^{\infty}(b \Omega)$.

A two-way infinite matrix $A=\left[a_{m l}\right], m, l=0, \pm 1, \pm 2, \ldots$ is called a Laurent matrix of order $k \in \mathbb{N}$ if

$$
a_{m+k, l+k}=a_{m, l}, m, l=0, \pm 1, \pm 2, \ldots
$$

Similarly a one-way infinite matrix $B=\left[b_{m l}\right], m, l=0,1,2, \ldots$ is called a Toeplitz matrix of order k if

$$
b_{m+k, l+k}=b_{m, l}, m, l=0,1,2, \ldots
$$

3. Previous results on Toeplitz operators

In this section, we collect previous results which was mostly proved in [5] in order to refer to known results with consistent notations and to make a development further. The following proposition is about construction of an orthonormal basis for $L^{2}(b \Omega)$.

Proposition 3.1. Suppose that Ω is a bounded n-connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Let f_{a} be the Ahlfors map associated to the pair (Ω, a). Let $S_{a_{j}}$ and $G_{a_{j}}$ be the Szegő kernels and Garabedian kernels associated to the points a_{j}, respectively for $j=0,1, \ldots, n-1$ with $a_{0}=a$. Then
(1) the set $\mathcal{B H}=\left\{S_{a_{j}} f_{a}^{k}: j=0,1, \ldots, n-1 ; k \geq 0\right\}$ is a basis for $H^{2}(b \Omega)$,
(2) the set $\mathcal{B} \mathcal{H}^{\perp}=\left\{G_{a_{j}} f_{a}^{-k}: j=0,1, \ldots, n-1, k \geq 0\right\}$ is a basis for $H^{2}(b \Omega)^{\perp}$,
(3) the set $\mathcal{B L}=\left\{S_{a_{j}} f_{a}^{k}, G_{a_{j}} f_{a}^{-k}: j=0,1, \ldots, n-1 ; k \geq 0\right\}$ is a basis for $L^{2}(b \Omega)$.

We can apply the Gram-Schmidt orthonormalization to the bases in Proposition 3.1 to get an orthonormal basis for $L^{2}(b \Omega)$.

Proposition 3.2. Suppose that Ω is a bounded n-connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Let f_{a} be the Ahlfors map associated to the pair (Ω, a). Let $S_{a_{j}}$ and $G_{a_{j}}$ be the Szegő kernels and Garabedian kernels associated to the points a_{j}, respectively for $j=0,1, \ldots, n-1$ with $a_{0}=a$. Then
(1) the set $\mathcal{O L}=\left\{E_{k n+j}: j=0,1, \ldots, n-1 ; k \geq 0\right\} \cup\left\{E_{-k n-j}\right.$: $j=0,1, \ldots, n-1 ; k \geq 0,-k n-j \leq-1\}$ is an orthonormal basis for $L^{2}(b \Omega)$ where

$$
E_{k n+j}=\sum_{i=0}^{j} c_{i j} S_{a_{i}} f_{a}^{k} \text { for } k n+j \geq 0
$$

$$
\begin{aligned}
& E_{-k n-j}=\left(1-\delta_{0}^{j}\right) \sum_{i=0}^{j-1} \overline{c_{i, j-1}} G_{a_{i}} f_{a}^{-k}+\delta_{0}^{j} \sum_{i=0}^{n-1} \overline{c_{i, n-1}} G_{a_{i}} f_{a}^{-k+1} \\
& \quad \text { for }-k n-j \leq-1
\end{aligned}
$$

and $c_{i j}, 0 \leq i \leq j \leq n-1$ are constants with $c_{00}=\sqrt{S(a, a)}^{-1}$ obtained by the Gram-Schmidt orthonormalization to the basis $\mathcal{B H}$ for the order of $S_{a} f_{a}^{k}, S_{a_{1}} f_{a}^{k}, \ldots, S_{a_{n-1}} f_{a}^{k}, k=0,1, \ldots$ and δ_{0}^{j} is the Kronecker delta and
(2) the set $\mathcal{O H}=\left\{E_{k n+j}: k \geq 0 ; j=0,1, \ldots, n-1\right\}$ is an orthonormal basis for $H^{2}(b \Omega)$.
Observe from orthogonality of S_{a} with $S_{a_{j}}$ for $j \geq 1$ and the Gram-Schmidt orthonormalization that $c_{0 j}=0$ for $j=1,2, \ldots, n-1$ and $c_{k k}>0$ for $k=$ $0,1, \ldots, n-1$.

The Toeplitz operator $T_{f_{a}}$ with symbol f_{a} as the Ahlfors map is then a shift operator of multiplicity n provided the base domain Ω is n-connected.

Proposition 3.3. Suppose that Ω is a bounded n-connected domain with C^{∞} smooth boundary. Let $a \in \Omega$ be fixed and let f_{a} be the Ahlfors map. Then

$$
T_{f_{a}}\left(E_{m}\right)=E_{m+n} \text { for } m \geq 0
$$

A one-way infinite matrix $\left[a_{i j}\right], i, j \geq 0$ is called a Toeplitz matrix of order n if

$$
\forall i, j \geq 0, \quad a_{i+n, j+n}=a_{i j}
$$

Then it is easy to see that given $\varphi \in L^{\infty}(b \Omega)$, the matrix $\left[T_{\varphi}\right]$ of T_{φ} with respect to the basis $\mathcal{O H}$ is a Toeplitz matrix of order n, i.e.,

$$
\left\langle T_{\varphi}\left(E_{m+n}\right), E_{l+n}\right\rangle=\left\langle T_{\varphi}\left(E_{m}\right), E_{l}\right\rangle \text { for } m, l \geq 0
$$

when Ω is n-connected. On the other hand, suppose that Ω is a bounded n connected domain with C^{∞} smooth boundary and suppose that given $a \in \Omega$, a bounded operator $A: H^{2}(b \Omega) \rightarrow H^{2}(b \Omega)$ satisfies the following commuting condition

$$
\operatorname{Cond}(\mathrm{C}) \quad\left\{\begin{aligned}
& A T_{S_{a_{j}}}=T_{S_{a_{j}}} A, \\
& A T_{f_{a_{j}}}=T_{f_{a_{j}}} A, j=1,2, \ldots, n-1 \\
&
\end{aligned}\right.
$$

Observe that the index $j=0$ is excluded in the second identity. Then we have the following classification for the Toeplitz operators.
Proposition 3.4. Suppose that Ω is a bounded n-connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. If a bounded operator $A: H^{2}(b \Omega) \rightarrow H^{2}(b \Omega)$ satisfies the commuting condition $\operatorname{Cond}(\mathrm{C})$ and if A induces a Toeplitz matrix of order n with respect to $\mathcal{O H}$, then A is a Toeplitz operator.

4. Matrices of Toeplitz operators

Now we are ready to work on matrices of Toeplitz operators. We sort all integers according to the Euclidean division divided by connectivity of the domain.

Definition. We say that an integer of the form $r=\alpha n+\beta$ with $\alpha \in \mathbb{Z},|\beta| \leq$ $n-1$ is written in the standard form if either both $\alpha \geq 0$ and $\beta \geq 0$ or both $\alpha<0$ and $\beta \leq 0$.

We now compute inner products $\left\langle E_{p} E_{l}, E_{m}\right\rangle$ for various positive or negative integers p, l and m 's. Since each case is mentioned in this contents, detailed computations are given case by case.

Lemma 4.1. Suppose that Ω is a bounded n-connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Suppose that $p=k n+j, l=k_{l} n+j_{l}, m=k_{m} n+j_{m}$ with $k, k_{l}, k_{m}, j, j_{l}, j_{m} \in$ $\mathbb{Z},|j|,\left|j_{l}\right|,\left|j_{m}\right| \leq n-1$ are all written in standard form. Let $c_{\alpha, \beta}$'s be the constants indicated in Proposition 3.2.
(1) If $p \geq 0, l \geq 0, m \geq 0$,

$$
\left\langle E_{p} E_{l}, E_{m}\right\rangle=\sum_{i=0}^{j} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu j_{l}} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, S_{a_{\nu}}\right\rangle .
$$

(2) If $p \geq 0, l \geq 0, m<0$,

$$
\begin{aligned}
& \left\langle E_{p} E_{l}, E_{m}\right\rangle \\
= & \left(1-\delta_{0}^{j_{m}}\right) \sum_{i=0}^{j} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{-j_{m}-1} c_{i j} c_{\mu j_{l}} c_{\nu,-j_{m}-1}\left\langle S_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, G_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j_{m}} \sum_{i=0}^{j} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{n-1} c_{i j} c_{\mu j_{l}} c_{\nu, n-1}\left\langle S_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle .
\end{aligned}
$$

(3) If $p \geq 0, l<0, m \geq 0$,

$$
\begin{aligned}
& \left\langle E_{p} E_{l}, E_{m}\right\rangle \\
= & \left(1-\delta_{0}^{j_{l}}\right) \sum_{i=0}^{j} \sum_{\mu=0}^{-j_{l}-1} \sum_{\nu=0}^{j_{m}} c_{i j} \overline{c_{\mu,-j_{l}-1}} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, S_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j_{l}} \sum_{i=0}^{j} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{j_{m}} c_{i j} \overline{c_{\mu, n-1}} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, S_{a_{\nu}}\right\rangle .
\end{aligned}
$$

(4) If $p \geq 0, l<0, m<0$,
$\left\langle E_{p} E_{l}, E_{m}\right\rangle$

$$
\begin{aligned}
= & \left(1-\delta_{0}^{j_{l}}\right)\left(1-\delta_{0}^{j_{m}}\right) \sum_{i=0}^{j} \sum_{\mu=0}^{-j_{l}-1} \sum_{\nu=0}^{-j_{m}-1} c_{i j} \overline{c_{\mu,-j_{l}-1}} c_{\nu,-j_{m}-1} . \\
& \left.+\left(1-\delta_{0}^{j_{l}}\right) \delta_{0}^{j_{m}} \sum_{i=0}^{j} \sum_{\mu=0}^{-j_{l}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, G_{a_{\nu}}\right\rangle \\
& c_{i j} \overline{c_{\mu,-j_{l}-1}} c_{\nu, n-1}\left\langle S_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j_{l}}\left(1-\delta_{0}^{j_{m}}\right) \sum_{i=0}^{j} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{-j_{m}-1} c_{i j} \overline{c_{\mu, n-1}} c_{\nu,-j_{m}-1}\left\langle S_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j_{l}} \delta_{0}^{j_{m}} \sum_{i=0}^{j} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{n-1} c_{i j} \overline{c_{\mu, n-1}} c_{\nu, n-1}\left\langle S_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+2}, G_{a_{\nu}}\right\rangle .
\end{aligned}
$$

(5) If $p<0, l \geq 0, m \geq 0$

$$
\begin{aligned}
& \left\langle E_{p} E_{l}, E_{m}\right\rangle \\
= & \left(1-\delta_{0}^{j}\right) \sum_{i=0}^{-j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} \overline{c_{i,-j-1}} c_{\mu j_{l}} \overline{c_{\nu j_{m}}}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, S_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} \overline{c_{i, n-1}} c_{\mu j_{l}} \overline{c_{\nu j_{m}}}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, S_{a_{\nu}}\right\rangle .
\end{aligned}
$$

(6) If $p<0, l \geq 0, m<0$,

$$
\left\langle E_{p} E_{l}, E_{m}\right\rangle
$$

$$
=\left(1-\delta_{0}^{j}\right)\left(1-\delta_{0}^{j_{m}}\right) \sum_{i=0}^{-j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{-j_{m}-1} \overline{c_{i,-j-1}} c_{\mu j_{l}} c_{\nu,-j_{m}-1} .
$$

$$
\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, G_{a_{\nu}}\right\rangle
$$

$$
+\left(1-\delta_{0}^{j}\right) \delta_{0}^{j_{m}} \sum_{i=0}^{-j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{n-1} \overline{c_{i,-j-1}} c_{\mu j_{l}} c_{\nu, n-1}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle
$$

$$
+\delta_{0}^{j}\left(1-\delta_{0}^{j_{m}}\right) \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{-j_{m}-1} \overline{c_{i, n-1}} c_{\mu j_{l}} c_{\nu,-j_{m}-1}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle
$$

$$
+\delta_{0}^{j} \delta_{0}^{j_{m}} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{n-1} \overline{c_{i, n-1}} c_{\mu j_{l}} c_{\nu, n-1}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+2}, G_{a_{\nu}}\right\rangle .
$$

(7) If $p<0, l<0, m \geq 0$,

$$
\left\langle E_{p} E_{l}, E_{m}\right\rangle
$$

$$
\begin{aligned}
= & \left(1-\delta_{0}^{j}\right)\left(1-\delta_{0}^{j_{l}}\right) \sum_{i=0}^{-j-1} \sum_{\mu=0}^{-j_{l}-1} \sum_{\nu=0}^{j_{m}} \overline{c_{i,-j-1}} \overline{c_{\mu,-j_{l}-1} c_{\nu j_{m}}} \\
& +\left(1-\delta_{0}^{j}\right) \delta_{0}^{j_{l}} \sum_{i=0}^{-j-1} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{j_{m}} \overline{c_{i,-j-1}} \frac{\left.G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, S_{a_{\nu}}\right\rangle}{c_{\mu, n-1}} c_{\nu, j_{m}}\left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, S_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j}\left(1-\delta_{0}^{j_{l}}\right) \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}-1} \sum_{\nu=0}^{j_{m}} \frac{c_{i, n-1}}{c_{\mu,-j_{l}-1} c_{\nu,-j_{m}-1}} \\
& +\delta_{0}^{j} \delta_{0}^{j_{l}} \sum_{i=0}^{n-1} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{j_{m}} \overline{c_{i, n-1}} \frac{\left.G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, S_{a_{\nu}}\right\rangle}{c_{\mu, n-1}} c_{\nu j_{m}}\left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+2}, S_{a_{\nu}}\right\rangle .
\end{aligned}
$$

(8) If $p<0, l<0, m<0$,

$$
\begin{aligned}
& \left\langle E_{p} E_{l}, E_{m}\right\rangle \\
& =\left(1-\delta_{0}^{j}\right)\left(1-\delta_{0}^{j_{l}}\right)\left(1-\delta_{0}^{j_{m}}\right) \sum_{i=0}^{-j-1} \sum_{\mu=0}^{-j_{l}-1} \sum_{\nu=0}^{-j_{m}-1} \overline{c_{i,-j-1}} \overline{c_{\mu,-j_{l}-1}} c_{\nu,-j_{m}-1} . \\
& \left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, G_{a_{\nu}}\right\rangle \\
& +\left(1-\delta_{0}^{j}\right)\left(1-\delta_{0}^{j_{l}}\right) \delta_{0}^{j_{m}} . \\
& \sum_{i=0}^{-j-1} \sum_{\mu=0}^{-j_{l}-1} \sum_{\nu=0}^{n-1} \overline{c_{i,-j-1}} \overline{c_{\mu,-j_{l}-1}} c_{\nu, n-1}\left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle \\
& +\left(1-\delta_{0}^{j}\right) \delta_{0}^{j_{l}}\left(1-\delta_{0}^{j_{m}}\right) . \\
& \sum_{i=0}^{-j-1} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{-j_{m}-1} \overline{c_{i,-j-1}} \overline{c_{\mu, n-1}} c_{\nu, n-1}\left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle \\
& +\left(1-\delta_{0}^{j}\right) \delta_{0}^{j_{l}} \delta_{0}^{j_{m}} . \\
& \sum_{i=0}^{-j-1} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{n-1} \overline{c_{i,-j-1}} \overline{c_{\mu, n-1}} c_{\nu, n-1}\left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+2}, G_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j}\left(1-\delta_{0}^{j_{l}}\right)\left(1-\delta_{0}^{j_{m}}\right) \sum_{i=0}^{n-1} \sum_{\mu=0}^{-j_{l}-1} \sum_{\nu=0}^{-j_{m}-1} \overline{c_{i, n-1}} \overline{c_{\mu,-j_{l}-1}} c_{\nu,-j_{m}-1} . \\
& \left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j}\left(1-\delta_{0}^{j_{l}}\right) \delta_{0}^{j_{m}} .
\end{aligned}
$$

$$
\begin{aligned}
& \quad \sum_{i=0}^{n-1} \sum_{\mu=0}^{-j_{l}-1} \sum_{\nu=0}^{n-1} \overline{c_{i, n-1}} \overline{c_{\mu,-j_{l}-1}} c_{\nu, n-1}\left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+2}, G_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j} \delta_{0}^{j_{l}}\left(1-\delta_{0}^{j_{m}}\right) \cdot \\
& +\sum_{i=0}^{n-1} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{-_{m}-1} \overline{c_{i, n-1}} \overline{c_{\mu, n-1}} c_{\nu,-j_{m}-1}\left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+2}, G_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j} \delta_{0}^{j_{l}} \delta_{0}^{j_{m}} \cdot \\
& \quad \sum_{i=0}^{n-1} \sum_{\mu=0}^{n-1} \sum_{\nu=0}^{n-1} \overline{c_{i, n-1}} \overline{c_{\mu, n-1}} c_{\nu, n-1}\left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+3}, G_{a_{\nu}}\right\rangle .
\end{aligned}
$$

Proof. The proof is straightforward by using that $f_{a}(z)^{-1}=\overline{f_{a}(z)}$ on $b \Omega$. Note also that on the boundary of $\Omega, G_{b} f_{b}=S_{b}$ for $b \in \Omega$.

Since we often use inqualities of integers in the form of Euclidean division by n, we need the following lemma which is easily proved case by case.
Lemma 4.2. Let n be a positive integer. Suppose that $k, \widetilde{k}, j, \widetilde{j}$ are all integers with $|j|,|\widetilde{j}| \leq n-1$ that satisfy the inequality

$$
k n+j \geq \widetilde{k} n+\widetilde{j}
$$

Then

$$
k-\widetilde{k}\left\{\begin{array}{l}
\geq 2 \quad \text { for }-2 n+2 \leq j-\widetilde{j} \leq-n-1 \\
\geq 1 \quad \text { for }-n \leq j-\widetilde{j} \leq-1 \\
\geq 0 \quad \text { for } 0 \leq j-\widetilde{j} \leq n-1 \\
\geq-1 \quad \text { for } n \leq j-\widetilde{j} \leq 2 n-2
\end{array}\right.
$$

Theorem 4.3. Let n be a positive integer and suppose that $p=k n+j, l=$ $k_{l} n+j_{l}, m=k_{m} n+j_{m}$ are all integers written in standard form. Then
(1) if r_{1} and r_{2} are integers for which $\left(k+r_{1}\right) n+j,\left(k_{l}+r_{2}\right) n+j_{l},\left(k_{m}+\right.$ $\left.r_{1}+r_{2}\right) n+j_{m}$ are all in standard form,

$$
\left\langle E_{p} E_{l}, E_{m}\right\rangle=\left\langle E_{p+r_{1} n} E_{l+r_{2} n}, E_{m+\left(r_{1}+r_{2}\right) n}\right\rangle
$$

(2) $\left\langle E_{p} E_{l}, E_{m}\right\rangle=0$ for $k \geq k_{m}-k_{l}+3$,
(3) $\left\langle E_{p} E_{l}, E_{m}\right\rangle=0$ for $k \geq k_{m}-k_{l}+2$ and $m \geq 0, l \geq 0$.

Proof. For (1), suppose that $\left(k+r_{1}\right) n+j,\left(k_{l}+r_{2}\right) n+j_{l},\left(k_{m}+r_{1}+r_{2}\right) n+j_{m}$ are all in standard form. Since adding $r_{1} n, r_{2} n,\left(r_{1}+r_{2}\right) n$ to p, l, m, respectively does not change remainders, the quotients and remainders of $p+r_{1} n, l+$ $r_{1} n, m+\left(r_{1}+r_{2}\right) n$ have the same signs (positiveness or negativeness) as those of p, l, m, respectively. Thus when the inner product $\left\langle E_{p+r_{1} n} E_{l+r_{2} n}, E_{m+\left(r_{1}+r_{2}\right) n}\right\rangle$ is expanded according to Lemma 4.1, all expressions except for the terms containing the Ahlfors map f_{a} are exactly identical to those for $\left\langle E_{p} E_{l}, E_{m}\right\rangle$. On the other hand, the exponents for the Ahlfors map f_{a} in the expansion
of $\left\langle E_{p} E_{l}, E_{m}\right\rangle$ contain $k+k_{l}-k_{m}$ and the exponents in the inner product $\left\langle E_{p+r_{1} n} E_{l+r_{2} n}, E_{m+\left(r_{1}+r_{2}\right) n}\right\rangle$ also contain $\left(k+r_{1}\right)+\left(k_{l}+r_{2}\right)-\left(k_{m}+r_{1}+r_{2}\right)=$ $k+k_{l}-k_{m}$ in all cases and hence eventually two expansions of $\left\langle E_{p} E_{l}, E_{m}\right\rangle$ and $\left\langle E_{p+r_{1} n} E_{l+r_{2} n}, E_{m+\left(r_{1}+r_{2}\right) n}\right\rangle$ are the same.

For (2), first observe that $S_{a_{\mu}}$ is holomorphic in $H^{2}(b \Omega)$ and $G_{a_{\mu}}$ is meromorphic with single simple pole at $z=a_{\mu}$ for $\mu=0,1, \ldots, n-1$. Note also that $f_{a_{\nu}}$ has zeroes at $z=a$ and $z=a_{\nu}$ for $\nu=0,1, \ldots, n-1$. Since $a=a_{0}, a_{1}, \ldots, a_{n-1}$ are all zeroes of $f_{a}, G_{a_{\mu}} f_{a}$ can be extended to be holomorphic at $z=a_{\mu}$ for all $\mu=0,1, \ldots, n-1$ and in particular $G_{a_{\mu}} f_{a_{\mu}}=S_{a_{\mu}}$ for $\mu=0,1, \ldots, n-1$. We now look at inner products expressed in Lemma 4.1 carefully and compute selected ones for the sake of simplicity.

$$
\begin{aligned}
& \left\langle S_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, S_{a_{\nu}}\right\rangle \\
= & S_{a_{i}}\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) f_{a}^{k+k_{l}-k_{m}}\left(a_{\nu}\right)=0 \text { if } k+k_{l}-k_{m} \geq 1, \\
& \left\langle S_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, G_{a_{\nu}}\right\rangle=\left\langle S_{a_{i}} S_{a_{\mu}} f_{a_{\nu}} f_{a}^{k+k_{l}-k_{m}+1}, S_{a_{\nu}}\right\rangle \\
= & S_{a_{i}}\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) f_{a_{\nu}}\left(a_{\nu}\right) f_{a}^{k+k_{l}-k_{m}+1}\left(a_{\nu}\right)=0 \text { if } k+k_{l}-k_{m}+1 \geq 0, \\
& \left\langle S_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, S_{a_{\nu}}\right\rangle=S_{a_{i}}\left(a_{\nu}\right)\left(G_{a_{\mu}} f_{a}\right)\left(a_{\nu}\right) f_{a}^{k+k_{l}-k_{m}}\left(a_{\nu}\right) \\
= & 0 \text { if } k+k_{l}-k_{m} \geq 1, \\
& \left\langle S_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+2}, G_{a_{\nu}}\right\rangle=\left\langle S_{a_{i}}\left(G_{a_{\mu}} f_{a}\right) f_{a_{\nu}} f_{a}^{k+k_{l}-k_{m}+1}, S_{a_{\nu}}\right\rangle \\
= & S_{a_{i}}\left(a_{\nu}\right)\left(G_{a_{\mu}} f_{a}\right)\left(a_{\nu}\right) f_{a_{\nu}}\left(a_{\nu}\right) f_{a}^{k+k_{l}-k_{m}+1}\left(a_{\nu}\right) \\
= & 0 \text { if } k+k_{l}-k_{m}+1 \geq 0, \\
& \left\langle G_{a_{i}} G_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, S_{a_{\nu}}\right\rangle=\left\langle\left(G_{a_{i}} f_{a}\right)\left(G_{a_{\mu}} f_{a}\right) f_{a}^{k+k_{l}-k_{m}-2}, S_{a_{\nu}}\right\rangle \\
= & \left(G_{a_{i}} f_{a}\right)\left(a_{\nu}\right)\left(G_{a_{\mu}} f_{a}\right)\left(a_{\nu}\right) f_{a}^{k+k_{l}-k_{m}-2}\left(a_{\nu}\right)=0 \text { if } k+k_{l}-k_{m}-2 \geq 1 .
\end{aligned}
$$

Hence all cases vanish if $k \geq k_{m}-k_{l}+3$.
Similarly, (3) is proved easily using Lemma 4.1-(1),(5). In fact, suppose that $m, l \geq 0$ and that $p=k n+j$ and $k \geq k_{m}-k_{l}+2$. If $k n+j \geq 0$, then

$$
\begin{aligned}
\left\langle E_{p} E_{l}, E_{m}\right\rangle & =\sum_{i=0}^{j} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu j_{l}} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, S_{a_{\nu}}\right\rangle \\
& =\sum_{i=0}^{j} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu j_{l}} \overline{c_{\nu j_{m}}} S_{a_{i}}\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) f_{a}^{k+k_{l}-k_{m}}\left(a_{\nu}\right)=0
\end{aligned}
$$

because $k+k_{l}-k_{m} \geq 1$ and $f_{a}(a)=0$. If $k n+j<0$, then again

$$
\begin{aligned}
& \left\langle E_{p} E_{l}, E_{m}\right\rangle \\
= & \left(1-\delta_{0}^{j}\right) \sum_{i=0}^{-j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} \overline{c_{i,-j-1}} c_{\mu j_{l}} \overline{c_{\nu j_{m}}}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}}, S_{a_{\nu}}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\delta_{0}^{j} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} \overline{c_{i, n-1}} c_{\mu j_{l}} \overline{c_{\nu j_{m}}}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}-k_{m}+1}, S_{a_{\nu}}\right\rangle \\
& =\left(1-\delta_{0}^{j}\right) \sum_{i=0}^{-j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} \overline{c_{i,-j-1}} c_{\mu j_{l}} \overline{c_{\nu j_{m}}}\left(G_{a_{i}} f_{a}\right)\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) f_{a}^{k+k_{l}-k_{m}-1}\left(a_{\nu}\right) \\
& \quad+\delta_{0}^{j} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{j_{m}} \overline{c_{i, n-1}} c_{\mu j_{l}} \overline{c_{\nu j_{m}}}\left(G_{a_{i}} f_{a}\right)\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) f_{a}^{k+k_{l}-k_{m}}\left(a_{\nu}\right)=0
\end{aligned}
$$

because both $k+k_{l}-k_{m}-1$ and $k+k_{l}-k_{m}$ are bigger that 0 and $f_{a}(a)=0$. Hence for either case, the inner product $\left\langle E_{p} E_{l}, E_{m}\right\rangle$ must be zero. Thus the proof is done.

The vanishing property (2) and (3) in Theorem 4.3 immediately proves the following theorem which computes the matrices $\left[L_{\varphi}\right]$ and $\left[T_{\varphi}\right]$ of the Laurent and the Toeplitz operators.

Theorem 4.4. Let n be a positive integer. Suppose that Ω is a bounded n connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ be in $L^{\infty}(b \Omega)$. Suppose that $l=k_{l} n+j_{l}, m=k_{m} n+j_{m}$ are integers written in standard form. Then
(1) the entry of m-th row and l-th column of the matrix $\left[L_{\varphi}\right]$ of the Laurent operator L_{φ} with respect to the orthonormal basis $\mathcal{O} \mathcal{L}$ is equal to

$$
\left[L_{\varphi}\right]_{m, l}=\sum_{p=-\infty}^{\left(k_{m}-k_{l}+2\right) n+n-1} \alpha_{p}\left\langle E_{p} E_{l}, E_{m}\right\rangle,
$$

(2) for $m, l \geq 0$ the entry of m-th row and l-th column of the matrix $\left[T_{\varphi}\right]$ of the Toeplitz operator T_{φ} with respect to the orthonormal basis $\mathcal{O H}$ is equal to

$$
\left[T_{\varphi}\right]_{m, l}=\sum_{p=-\infty}^{\left(k_{m}-k_{l}+1\right) n+n-1} \alpha_{p}\left\langle E_{p} E_{l}, E_{m}\right\rangle .
$$

Now we want to find a relation between the one-way infinite matrix $\left[T_{\varphi}\right]$ and the Fourier coefficients $\left\langle\varphi, E_{p}\right\rangle$ for the symbol φ. First we compute the entry of the 0 -th row and the 0 -th column.

Corollary 4.5. Let n be a positive integer. Suppose that Ω is a bounded n-connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ be in $L^{\infty}(b \Omega)$. Then the entry of 0 -th row and 0 -th column of the matrix $\left[T_{\varphi}\right]$ with
respect to the orthonormal basis $\mathcal{O H}$ is equal to

$$
\begin{aligned}
{\left[T_{\varphi}\right]_{0,0}=} & \alpha_{0} c_{00}^{3} S_{a}(a)^{2}+\sum_{j=1}^{n-1} \alpha_{-j} \sum_{i=0}^{j-1} \overline{c_{i, j-1}} c_{00}^{2}\left\langle G_{a_{i}} S_{a}, S_{a}\right\rangle \\
& +\sum_{p=-\infty}^{-n} \alpha_{p}\left\langle E_{p} E_{0}, E_{0}\right\rangle .
\end{aligned}
$$

Proof. We split the infinite sum of Theorem 4.4 into three parts as

$$
\begin{aligned}
{\left[T_{\varphi}\right]_{0,0}=} & \sum_{p=0}^{1 \cdot n+n-1} \alpha_{p}\left\langle E_{p} E_{0}, E_{0}\right\rangle \\
& +\sum_{p=-(n-1)}^{-1} \alpha_{p}\left\langle E_{p} E_{0}, E_{0}\right\rangle+\sum_{p=-\infty}^{-n} \alpha_{p}\left\langle E_{p} E_{0}, E_{0}\right\rangle .
\end{aligned}
$$

The first term is then by Lemma 4.1-(1) equal to

$$
\begin{aligned}
& \sum_{k=0}^{1} \sum_{j=0}^{n-1} \alpha_{k n+j}\left\langle E_{k n+j} E_{0}, E_{0}\right\rangle=\sum_{k=0}^{1} \sum_{j=0}^{n-1} \alpha_{k n+j} \sum_{i=0}^{j} c_{i j} c_{00}^{2}\left\langle S_{a i} S_{a} f_{a}^{k}, S_{a}\right\rangle \\
= & \sum_{j=0}^{n-1} \alpha_{j} \sum_{i=0}^{j} c_{i j} c_{00}^{2} S_{a_{i}}(a) S_{a}(a)=\sum_{j=0}^{n-1} \alpha_{j} c_{0 j} c_{00}^{2} S_{a}(a)^{2}=\alpha_{0} c_{00}^{3} S_{a}(a)^{2} .
\end{aligned}
$$

In the proof we used the properties that $f_{a}(a)=0$ and $S_{a_{i}}(a)=0, c_{0 j}=0$ for $i \geq 1$. The second term in the expression of $\left[T_{\varphi}\right]_{0,0}$ above is nothing but the case $k=k_{l}=k_{m}=0$ in Lemma 4.1(5). Hence we are done.

In order to differentiate entries of the 0 -th column vector of the matrix $\left[T_{\varphi}\right]$ which correspond to remainders and quotients in the Euclidean division, we first compute $\left[T_{\varphi}\right]_{j_{m}, 0}$ for $j_{m}=1,2, \ldots, n-1$ and $n \geq 2$.

Corollary 4.6. Let $n \geq 2$ be an integer. Suppose that Ω is a bounded n connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ be in $L^{\infty}(b \Omega)$. Then the entry of j_{m}-th row and 0 -th column of the matrix $\left[T_{\varphi}\right]$ with $1 \leq j_{m} \leq n-1$ with respect to the orthonormal basis $\mathcal{O H}$ is equal to

$$
\begin{aligned}
{\left[T_{\varphi}\right]_{j_{m}, 0}=} & \sum_{j=1}^{n-1} \alpha_{-j} \sum_{i=0}^{j-1} \sum_{\nu=0}^{j_{m}} \overline{c_{i, j-1}} c_{00} \overline{c_{\nu j_{m}}}\left\langle G_{a_{i}} S_{a}, S_{a_{\nu}}\right\rangle \\
& +\sum_{p=-\infty}^{-n} \alpha_{p}\left\langle E_{p} E_{0}, E_{m}\right\rangle .
\end{aligned}
$$

Proof. Let j_{m} be an integer with $1 \leq j_{m} \leq n-1$. Suppose that $p=k n+j$ is written in standard form and $0 \leq p \leq j_{m}+2 n-1=2 n+\left(j_{m}-1\right)$. Since
$0 \leq j \leq n-1$ and $0 \leq j_{m}-1 \leq n-2,-n+1 \leq\left(j_{m}-1\right)-j \leq n-2$. It thus follows from Lemma 4.2 and Lemma 4.1 that $2-k \geq 0$ and hence that

$$
\begin{aligned}
& \sum_{p=0}^{j_{m}+2 n-1} \alpha_{p}\left\langle E_{p} E_{0}, E_{j_{m}}\right\rangle=\sum_{k=0}^{2} \sum_{j=0}^{n-1} \alpha_{k n+j} \sum_{i=0}^{j} \sum_{\nu=0}^{j_{m}} c_{i j} c_{00} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} S_{a} f_{a}^{k}, S_{a_{\nu}}\right\rangle \\
= & \sum_{j=0}^{n-1} \alpha_{j} \sum_{i=0}^{j} \sum_{\nu=0}^{j_{m}} c_{i j} c_{00} \overline{c_{\nu j_{m}}} S_{a_{i}}\left(a_{\nu}\right) S_{a}\left(a_{\nu}\right)=\sum_{j=0}^{n-1} \alpha_{j} \sum_{i=0}^{j} c_{i j} c_{00} \overline{c_{0 j_{m}}} S_{a_{i}}(a) S_{a}(a) \\
= & \sum_{j=0}^{n-1} \alpha_{j} c_{0 j} c_{00} \overline{c_{0 j_{m}}} S_{a}(a)^{2}=\alpha_{0} c_{00}^{2} \overline{c_{0 j_{m}}} S_{a}(a) S_{a}(a)=\delta_{0}^{j_{m}} \alpha_{0} c_{00}^{3} S_{a}(a)^{2}
\end{aligned}
$$

which is equal to zero because $j_{m} \geq 1$. Hence the proof is done by Theorem 4.4 and Lemma 4.1.

Next we compute the entry $\left[T_{\varphi}\right]_{m, 0}$ for $m \geq n$.
Corollary 4.7. Let n be a positive integer. Suppose that Ω is a bounded n-connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ be in $L^{\infty}(b \Omega)$. Then the entry of m-th row and 0 -th column of the matrix $\left[T_{\varphi}\right]$ with $m=k_{m} n+j_{m}, k_{m} \geq 1,0 \leq j_{m} \leq n-1$ with respect to the orthonormal basis $\mathcal{O H}$ is equal to

$$
\begin{aligned}
{\left[T_{\varphi}\right]_{m, 0}=} & {\left[T_{\varphi}\right]_{k_{m} n+j_{m}, 0} } \\
= & \delta_{0}^{j_{m}} \alpha_{k_{m} n} c_{00}^{3} S_{a}(a)^{2}+\sum_{j=1}^{n-1} \alpha_{\left(k_{m}-1\right) n+j} \sum_{i=0}^{j} \sum_{\nu=0}^{j_{m}} c_{i j} c_{00} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} G_{a}, S_{a_{\nu}}\right\rangle \\
& +\sum_{p=-\infty}^{\left(k_{m}-1\right) n} \alpha_{p}\left\langle E_{p} E_{0}, E_{m}\right\rangle
\end{aligned}
$$

Proof. Suppose that $p=k n+j$ is written in standard form and $\left(k_{m}+1\right) n \leq$ $p \leq m+2 n-1=\left(k_{m}+2\right) n+j_{m}-1$. Since $0 \leq j \leq n-1, k \geq k_{m}+1$. Thus the exponent $k-k_{m}$ is at least 1 in Lemma 4.1-(1) and hence $\left\langle E_{p} E_{0}, E_{m}\right\rangle$ must be zero. It follows from Theorem 4.4 that

$$
\begin{aligned}
{\left[T_{\varphi}\right]_{m, 0}=} & \sum_{j=0}^{n-1} \alpha_{k_{m} n+j} \sum_{i=0}^{j} \sum_{\nu=0}^{j_{m}} c_{i j} c_{00} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} S_{a}, S_{a_{\nu}}\right\rangle \\
& +\sum_{j=1}^{n-1} \alpha_{\left(k_{m}-1\right) n+j}\left\langle E_{\left(k_{m}-1\right) n+j} E_{0}, E_{m}\right\rangle+\sum_{p=-\infty}^{\left(k_{m}-1\right) n} \alpha_{p}\left\langle E_{p} E_{0}, E_{m}\right\rangle
\end{aligned}
$$

Now the first term equals

$$
\sum_{j=0}^{n-1} \alpha_{k_{m} n+j} \sum_{i=0}^{j} \sum_{\nu=0}^{j_{m}} c_{i j} c_{00} \overline{c_{\nu j_{m}}} S_{a_{i}}\left(a_{\nu}\right) S_{a}\left(a_{\nu}\right)
$$

$$
\begin{aligned}
& =\sum_{j=0}^{n-1} \alpha_{k_{m} n+j} \sum_{i=0}^{j} c_{i j} c_{00} \overline{c_{0 j_{m}}} S_{a_{i}}(a) S_{a}(a)=\sum_{j=0}^{n-1} \alpha_{k_{m} n+j} c_{0 j} c_{00} \overline{c_{0 j_{m}}} S_{a}(a)^{2} \\
& =\alpha_{k_{m} n} c_{00}^{2} \overline{c_{0 j_{m}}} S_{a}(a)^{2}=\delta_{0}^{j_{m}} \alpha_{k_{m} n} c_{00}^{3} S_{a}(a)^{2}
\end{aligned}
$$

and the second term equals

$$
\begin{aligned}
& \sum_{j=1}^{n-1} \alpha_{\left(k_{m}-1\right) n+j} \sum_{i=0}^{j} \sum_{\nu=0}^{j_{m}} c_{i j} c_{00} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} S_{a} f_{a}^{k_{m}-1-k_{m}}, S_{a_{\nu}}\right\rangle \\
= & \sum_{j=1}^{n-1} \alpha_{\left(k_{m}-1\right) n+j} \sum_{i=0}^{j} \sum_{\nu=0}^{j_{m}} c_{i j} c_{00} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} G_{a}, S_{a_{\nu}}\right\rangle
\end{aligned}
$$

and hence the proof completes.
Similarly we can compute 0 -th row vector of the matrix $\left[T_{\varphi}\right.$] which produce the Fourier coefficients with negative numbered indexes.
Corollary 4.8. Let $n \geq 2$ be an integer. Suppose that Ω is a bounded n connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ be in $L^{\infty}(b \Omega)$. Then the entry of 0 -th row and j_{l}-th column of the matrix $\left[T_{\varphi}\right]$ with $1 \leq j_{l} \leq n-1$ with respect to the orthonormal basis $\mathcal{O H}$ is equal to

$$
\begin{aligned}
{\left[T_{\varphi}\right]_{0, j_{l}}=} & \sum_{j=1}^{n-1} \alpha_{-j} \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \overline{c_{i, j-1}} c_{\mu j_{l}} c_{00}\left\langle G_{a_{i}} S_{a_{\mu}}, S_{a}\right\rangle \\
& +\sum_{p=-\infty}^{-n} \alpha_{p}\left\langle E_{p} E_{j_{l}}, E_{0}\right\rangle
\end{aligned}
$$

Proof. Let j_{l} be an integer with $1 \leq j_{l} \leq n-1$. Suppose that $p=k n+j$ is written in standard form and $0 \leq p \leq-j_{l}+2 n-1=n+\left(n-j_{l}-1\right)$. Since $0 \leq n-j_{l}-1 \leq n-2$ and $0 \leq j \leq n-1,-n+1 \leq\left(n-j_{l}-1\right)-j \leq n-2$. It thus follows from Lemma 4.2 and Lemma 4.1 that $0 \leq k \leq 1$ and hence that

$$
\begin{aligned}
& \sum_{p=0}^{-j_{l}+2 n-1} \alpha_{p}\left\langle E_{p} E_{j_{l}}, E_{0}\right\rangle=\sum_{k=0}^{1} \sum_{j=0}^{n-1} \alpha_{k n+j} \sum_{i=0}^{j} \sum_{\mu=0}^{j_{l}} c_{i j} c_{\mu j_{l}} c_{00}\left\langle S_{a_{i}} S_{a_{\mu}} f_{a}^{k}, S_{a}\right\rangle \\
= & \sum_{j=0}^{n-1} \alpha_{j} \sum_{i=0}^{j} \sum_{\mu=0}^{j_{l}} c_{i j} c_{\mu j_{l}} c_{00} S_{a_{i}}(a) S_{a_{\mu}}(a)=\sum_{j=0}^{n-1} \alpha_{j} \sum_{i=0}^{j} c_{i j} c_{0 j_{l}} c_{00} S_{a_{i}}(a) S_{a}(a)=0
\end{aligned}
$$

since $c_{0} j_{l}=0$ for $j_{l} \geq 1$. Hence the proof of this corollary is done by Theorem 4.4 and Lemma 4.1.

Corollary 4.9. Let n be a positive integer. Suppose that Ω is a bounded n-connected domain with C^{∞} smooth boundary. Let a be fixed in Ω and let $a_{1}, a_{2}, \ldots, a_{n-1}$ be distinct simple zeroes of S_{a}. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ be in
$L^{\infty}(b \Omega)$. Then the entry of 0 -th row and l-th column of the matrix $\left[T_{\varphi}\right]$ with $l=k_{l} n+j_{l}, k_{l} \geq 1,0 \leq j_{l} \leq n-1$ with respect to the orthonormal basis $\mathcal{O H}$ is equal to

$$
\begin{aligned}
{\left[T_{\varphi}\right]_{0, l}=} & {\left[T_{\varphi}\right]_{0, k_{l} n+j_{l}} } \\
= & \chi_{[2, \infty)}\left(k_{l}\right) \alpha_{-\left(k_{l}-1\right) n-1} \delta_{0}^{j_{l}} c_{00}^{3} S_{a}(a)^{2} \\
& +\alpha_{-k_{l} n} \delta_{1}^{n} \delta_{0}^{j_{l}} c_{00}^{3} S_{a}(a)^{2}+\sum_{j=1}^{n-1} \alpha_{-k_{l} n-j} \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \overline{c_{i, j-1}} c_{\mu j_{l}} c_{00}\left\langle G_{a_{i}} S_{a_{\mu}}, S_{a}\right\rangle \\
& +\sum_{p=-\infty}^{-\left(k_{l}+1\right) n} \alpha_{p}\left\langle E_{p} E_{l}, E_{0}\right\rangle .
\end{aligned}
$$

Proof. Let $l=k_{l} n+j_{l}$ be in standard form with $l \geq 1$. Suppose also that $p=k n+j$ is written in standard form and $-\left(k_{l}-1\right) n \leq p \leq-l+2 n-1=$ $-\left(k_{l}-2\right) n-\left(j_{l}+1\right)$.

If $j_{l}=n-1$, then $p=-\left(k_{l}-1\right) n$ and so in this case

$$
\begin{aligned}
\left\langle E_{p} E_{l}, E_{0}\right\rangle & =\left\langle E_{-\left(k_{l}-1\right) n} E_{k_{l} n+(n-1)}, E_{0}\right\rangle=\left\langle E_{n} E_{n-1}, E_{0}\right\rangle \\
& =\sum_{\mu=0}^{n-1} c_{00} c_{\mu, n-1} c_{00}\left\langle S_{a} S_{a_{\mu}} f_{a}, S_{a}\right\rangle=0 .
\end{aligned}
$$

Here for equality of the second and third identities Theorem 4.3 is used.
Suppose that $0 \leq j_{l} \leq n-2$ with $n \geq 2$. If $k_{l}=1$, then $0 \leq p=j \leq$ $n-j_{l}-1 \leq n-1$, so

$$
\left\langle E_{p} E_{l}, E_{0}\right\rangle=\left\langle E_{j} E_{n+j_{l}}, E_{0}\right\rangle=\sum_{i=0}^{j} \sum_{\mu=0}^{j_{l}} c_{i j} c_{\mu j_{l}} c_{00}\left\langle S_{a_{i}} S_{a_{\mu}} f_{a}, S_{a}\right\rangle=0
$$

and if $k_{l} \geq 2$, then $p<0$ and it follows from the inequality $-\left(k_{l}-1\right) n \leq p$ that $k+k_{l}-1 \geq 0$. Since $0 \leq j_{l} \leq n-2$ and $-n+1 \leq j \leq 0,-n+1 \leq-j_{l}-1-j \leq$ $n-2$, so it follows from the inequality $p \leq-\left(k_{l}-2\right) n-\left(j_{l}+1\right)$ and Lemma 4.2 that $-k_{l}+2-k \geq 0$ and hence $1 \leq k+k_{l} \leq 2$. Thus for this case,

$$
\begin{aligned}
\left\langle E_{p} E_{l}, E_{0}\right\rangle= & \left(1-\delta_{0}^{j}\right) \sum_{i=0}^{-j-1} \sum_{\mu=0}^{j_{l}} \overline{c_{i,-j-1}} c_{\mu j_{l}} c_{00}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}}, S_{a}\right\rangle \\
& +\delta_{0}^{j} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \overline{c_{i, n-1}} c_{\mu j_{l}} c_{00}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}+1}, S_{a}\right\rangle
\end{aligned}
$$

and the second term must be zero because the function $G_{a_{i}} S_{a_{\mu}} f_{a}^{k+k_{l}+1}=$ $\left(G_{a_{i}} f_{a}\right) S_{a_{\mu}} f_{a}^{k+k_{l}}$ has a removable singularity at $z=a_{i}$ and $k+k_{l} \geq 1$. And the first term is equal to

$$
\left(1-\delta_{0}^{j}\right) \sum_{i=0}^{-j-1} \sum_{\mu=0}^{j_{l}} \overline{c_{i,-j-1}} c_{\mu j_{l}} c_{00}\left(G_{a_{i}} f_{a}\right)(a) S_{a_{\mu}}(a) f_{a}^{k+k_{l}-1}(a)
$$

$$
\begin{aligned}
& =\left(1-\delta_{0}^{j}\right) \sum_{i=0}^{-j-1} \overline{c_{i,-j-1}} c_{0 j_{l}} c_{00}\left(G_{a_{i}} f_{a}\right)(a) S_{a}(a) f_{a}^{k+k_{l}-1}(a) \\
& =\left(1-\delta_{0}^{j}\right) \overline{c_{0,-j-1}} c_{0 j_{l}} c_{00} S_{a}(a)^{2} f_{a}^{k+k_{l}-1}(a) \\
& =\delta_{1-k_{l}}^{k}\left(1-\delta_{0}^{j}\right) \overline{c_{0,-j-1}} c_{0 j_{l}} c_{00} S_{a}(a)^{2} \\
& =\delta_{1-k_{l}}^{k} \delta_{-1}^{j} \delta_{0}^{j_{l}} c_{00}^{3} S_{a}(a)^{2} .
\end{aligned}
$$

In equality of the second and the third identities, we used the fact that $G_{a_{i}} f_{a}$ is holomorphic at $z=a_{i}$ and is also zero if $i \neq 0$ because of $f_{a}(a)=0$. Hence

$$
\begin{equation*}
\sum_{p=-\left(k_{l}-1\right) n}^{-l+2 n-1}\left\langle E_{p} E_{l}, E_{0}\right\rangle=\chi_{[2, \infty)}\left(k_{l}\right) \alpha_{-\left(k_{l}-1\right) n-1} \delta_{0}^{j_{l}} c_{00}^{3} S_{a}(a)^{2} . \tag{4.1}
\end{equation*}
$$

Next we compute $\left\langle E_{p} E_{l}, E_{0}\right\rangle$ for the case $k=-k_{l}$. It then follows from Theorem 4.3 and Lemma 4.1 that

$$
\begin{aligned}
\sum_{j=0}^{n-1}\left\langle E_{-k_{l} n-j} E_{k_{l} n+j_{l}}, E_{0}\right\rangle= & \sum_{j=0}^{n-1}\left\langle E_{-j} E_{j_{l}}, E_{0}\right\rangle \\
= & \sum_{j=1}^{n-1} \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \overline{c_{i, j-1}} c_{\mu j_{l}} c_{00}\left\langle G_{a_{i}} S_{a_{\mu}}, S_{a}\right\rangle \\
& +\sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \overline{c_{i, n-1}} c_{\mu j_{l}} c_{00}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}, S_{a}\right\rangle .
\end{aligned}
$$

And the second term from above is as before equal to

$$
\begin{aligned}
\sum_{i=0}^{n-1} \overline{c_{i, n-1}} c_{0 j_{l}} c_{00}\left(G_{a_{i}} f_{a}\right)(a) S_{a}(a) & =\overline{c_{0, n-1}} c_{0 j_{l}} c_{00}\left(G_{a} f_{a}\right)(a) S_{a}(a) \\
& =\delta_{1}^{n} \delta_{0}^{j_{l}} c_{00}^{3} S_{a}(a)^{2}
\end{aligned}
$$

Hence

$$
\begin{align*}
& \sum_{j=0}^{n-1} \alpha_{-k_{l} n-j}\left\langle E_{-k_{l} n-j} E_{k_{l} n+j_{l}}, E_{0}\right\rangle \\
= & \alpha_{-k_{l} n} \delta_{1}^{n} \delta_{0}^{j_{l}} c_{00}^{3} S_{a}(a)^{2}+\sum_{j=1}^{n-1} \alpha_{-k_{l} n-j} \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \overline{c_{i, j-1}} c_{\mu j_{l}} c_{00}\left\langle G_{a_{i}} S_{a_{\mu}}, S_{a}\right\rangle . \tag{4.2}
\end{align*}
$$

Therefore from identities (4.1) and (4.2) and from Theorem 4.4, the proof of Corollary 4.9 completes.

5. Matrices of products of Topeplitz operators

In the final section we work on products of Toeplitz operators which may not be Toeplitz operators in general even for the case of the unit disc. Here we find a necessary condition for the products to be Toeplitz operators.

Theorem 5.1. Let n be a positive integer. Suppose that Ω is a bounded n connected domain with C^{∞} smooth boundary. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ and $\psi=\sum_{q=-\infty}^{\infty} \beta_{q} E_{q}$ be symbols in $L^{\infty}(b \Omega)$. Then given nonnegative integers $m=k_{m} n+j_{m}, l=k_{l} n+j_{l}$ in standard form,

$$
\left.\begin{array}{rl}
\left(\left[T_{\varphi}\right]\left[T_{\psi}\right]\right)_{m+n, l+n} \tag{5.1}\\
=\left(\left[T_{\varphi}\right]\left[T_{\psi}\right]\right)_{m, l} \\
+ & \sum_{r=0}^{n-1}[
\end{array}\left(\sum_{j=0}^{n-1} \alpha_{\left(k_{m}+1\right) n+j} \sum_{i=0}^{j} \sum_{\mu=0}^{r} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu r} \overline{c_{\nu j_{m}}} S_{a_{i}}\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right)\right] \sum_{p=-\infty}^{k_{m} n+n-1} \alpha_{p}\left\langle E_{p} E_{r}, E_{m+n}\right\rangle\right) .
$$

Proof. Let $m=k_{m} n+j_{m}, l=k_{l} n+j_{l}$ be nonnegative integers in standard form. Then it follows from Theorem 4.4 that

$$
\begin{align*}
& \left(\left[T_{\varphi}\right]\left[T_{\psi}\right]\right)_{m+n, l+n}=\sum_{r=0}^{\infty}\left[T_{\varphi}\right]_{m+n, r}\left[T_{\psi}\right]_{r, l+n} \tag{5.2}\\
= & \sum_{r=0}^{\infty}\left(\sum_{p=-\infty}^{\left(k_{m}-k_{r}+2\right) n+n-1} \alpha_{p}\left\langle E_{p} E_{r}, E_{m+n}\right\rangle \sum_{q=-\infty}^{\left(k_{r}-k_{l}\right) n+n-1} \beta_{q}\left\langle E_{q} E_{l+n}, E_{r}\right\rangle\right) \\
= & \sum_{r=0}^{n-1}\left(\sum_{p=-\infty}^{\left(k_{m}+2\right) n+n-1} \alpha_{p}\left\langle E_{p} E_{r}, E_{m+n}\right\rangle \sum_{q=-\infty}^{-k_{l} n+n-1} \beta_{q}\left\langle E_{q} E_{l+n}, E_{r}\right\rangle\right) \\
& +\sum_{r=n}^{\infty}\left(\sum_{p=-\infty}^{\left(k_{m}-k_{r}+2\right) n+n-1} \alpha_{p}\left\langle E_{p} E_{r}, E_{m+n}\right\rangle \sum_{q=-\infty}^{\left(k_{r}-k_{l}\right) n+n-1} \beta_{q}\left\langle E_{q} E_{l+n}, E_{r}\right\rangle\right)
\end{align*}
$$

and as letting $s=r-n$, the second term from above is, by Theorem 4.3 equal to

$$
\begin{aligned}
& \sum_{s=0}^{\infty}\left(\sum_{p=-\infty}^{\left(k_{m}-k_{s}+1\right) n+n-1} \alpha_{p}\left\langle E_{p} E_{s+n}, E_{m+n}\right\rangle\right. \\
= & \sum_{s=0}^{\infty}\left(\sum_{q=-\infty}^{\left(k_{m}-k_{s}+1\right) n+n-1} \sum_{p=-\infty}^{\left(k_{s}-k_{l}+1\right) n+n-1} \beta_{q}\left\langle E_{q} E_{l+n}, E_{s+n}\right\rangle\right) \\
= & \left(\left[T_{\varphi}\right]\left[T_{\psi}\right]\right)_{m, l} .
\end{aligned}
$$

On the other hand, for $0 \leq r, j \leq n-1$, it is easy to see from Lemma 4.1 that

$$
\begin{align*}
& \left\langle E_{\left(k_{m}+2\right) n+j} E_{r}, E_{m+n}\right\rangle \\
= & \sum_{i=0}^{j} \sum_{\mu=0}^{r} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu r} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} S_{a_{\mu}} f_{a}^{k_{m}+2-k_{m}-1}, S_{a_{\nu}}\right\rangle \tag{5.3}\\
= & \sum_{i=0}^{j} \sum_{\mu=0}^{r} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu r} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} S_{a_{\mu}} f_{a}, S_{a_{\nu}}\right\rangle=0
\end{align*}
$$

and

$$
\begin{aligned}
& \left\langle E_{-k_{l} n-j} E_{l+n}, E_{r}\right\rangle \\
= & \left(1-\delta_{0}^{j}\right) \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, j-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{-k_{l}+k_{l}+1}, S_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, n-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}^{-k_{l}+k_{l}+1+1}, S_{a_{\nu}}\right\rangle \\
= & \left(1-\delta_{0}^{j}\right) \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, j-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left(G_{a_{i}} f_{a}\right)\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right)
\end{aligned}
$$

because in the second term the function $G_{a_{i}} S_{a_{\mu}} f_{a}^{2}=\left(G_{a_{i}} f_{a}\right) S_{a_{\mu}} f_{a}$ is holomorphic at a_{i} and has a zero at a_{ν}.

And similarly it follows that

$$
\begin{align*}
& \left\langle E_{\left(k_{m}+1\right) n+j} E_{r}, E_{m+n}\right\rangle=\sum_{i=0}^{j} \sum_{\mu=0}^{r} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu r} \overline{c_{\nu j_{m}}}\left\langle S_{a_{i}} S_{a_{\mu}}, S_{a_{\nu}}\right\rangle \\
= & \sum_{i=0}^{j} \sum_{\mu=0}^{r} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu r} \overline{c_{\nu j_{m}}} S_{a_{i}}\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) \tag{5.5}
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle E_{-\left(k_{l}+1\right) n-j} E_{l+n}, E_{r}\right\rangle \\
= & \left(1-\delta_{0}^{j}\right) \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, j-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left\langle G_{a_{i}} S_{a_{\mu}}, S_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, n-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left\langle G_{a_{i}} S_{a_{\mu}} f_{a}, S_{a_{\nu}}\right\rangle \tag{5.6}\\
= & \left(1-\delta_{0}^{j}\right) \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, j-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left\langle G_{a_{i}} S_{a_{\mu}}, S_{a_{\nu}}\right\rangle \\
& +\delta_{0}^{j} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, n-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left(G_{a_{i}} f_{a}\right)\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) .
\end{align*}
$$

Thus it follows from (5.3), (5.4), (5.5), and (5.6) that the first term in the last identity of (5.2) is equal to the remainder term of (5.1) and hence the proof is finished.

The following corollary is an immediate consequence of Theorem 5.1.
Corollary 5.2. Let n be a positive integer. Suppose that Ω is a bounded n connected domain with C^{∞} smooth boundary. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ and $\psi=$ $\sum_{q=-\infty}^{\infty} \beta_{q} E_{q}$ be symbols. If, for all nonnegative integers $m=k_{m} n+j_{m}, l=$ $k_{l} n+j_{l}$ written in standard form,

$$
\begin{align*}
& \sum_{r=0}^{n-1}[(\sum_{j=0}^{n-1} \alpha_{\left(k_{m}+1\right) n+j} \sum_{i=0}^{j} \sum_{\mu=0}^{r} \sum_{\nu=0}^{j_{m}} c_{i j} c_{\mu r} \overline{c_{\nu j_{m}}} S_{a_{i}}\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) \tag{5.7}\\
&\left.+\sum_{p=-\infty}^{k_{m} n+n-1} \alpha_{p}\left\langle E_{p} E_{r}, E_{m+n}\right\rangle\right) \\
&\left(\sum_{j=0}^{n-1} \alpha_{-k_{l} n-j}\left(1-\delta_{0}^{j}\right) \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, j-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left(G_{a_{i}} f_{a}\right)\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right)\right. \\
&+\sum_{j=0}^{n-1} \alpha_{-\left(k_{l}+1\right) n-j}\left(1-\delta_{0}^{j}\right) \sum_{i=0}^{j-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, j-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left\langle G_{a_{i}} S_{a_{\mu}}, S_{a_{\nu}}\right\rangle \\
& \quad+\sum_{j=0}^{n-1} \alpha_{-\left(k_{l}+1\right) n-j} \delta_{0}^{j} \sum_{i=0}^{n-1} \sum_{\mu=0}^{j_{l}} \sum_{\nu=0}^{r} \overline{c_{i, n-1}} c_{\mu j_{l}} \overline{c_{\nu r}}\left(G_{a_{i}} f_{a}\right)\left(a_{\nu}\right) S_{a_{\mu}}\left(a_{\nu}\right) \\
&\left.\left.\quad+\sum_{q=-\infty}^{-\left(k_{l}+2\right) n} \beta_{q}\left\langle E_{q} E_{l+n}, E_{r}\right\rangle\right)\right]=0,
\end{align*}
$$

then the product $T_{\varphi} T_{\psi}$ of two Toeplitz operators T_{φ} and T_{ψ} induces a Toeplitz matrix of order n.

Thus the equation (5.7) is a necessary condition for the product of two Toeplitz operators to be a Toeplitz operator and so by Proposition 3.4 we obtain the following result.

Corollary 5.3. Let n be a positive integer. Suppose that Ω is a bounded n connected domain with C^{∞} smooth boundary. Let $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ and $\psi=\sum_{q=-\infty}^{\infty} \beta_{q} E_{q}$ be symbols in $L^{\infty}(b \Omega)$. If the product $T_{\varphi} T_{\psi}$ of two Toeplitz operators T_{φ} and T_{ψ} on the Hardy space $H^{2}(b \Omega)$ satisfies $\operatorname{Cond}(\mathrm{C})$ and (5.7), then it is a Toeplitz operator.

In the case of simply connected domain Ω, either the former symbol ψ must be a function in the Hardy space $H^{2}(b \Omega)$ or some constant times the latter symbol φ plus the Szegő kernel S_{a} must be an element of the orthogonal complement $H^{2}(b \Omega)^{\perp}$ provided the product $T_{\varphi} T_{\psi}$ of two Toeplitz operators T_{φ} and T_{ψ} is a Toeplitz operator with some condition as follows.

Corollary 5.4. Suppose that Ω is a simply connected bounded domain with C^{∞} smooth boundary and suppose that the product $T_{\varphi} T_{\psi}$ of Toeplitz operators T_{φ} and T_{ψ} is a Toeplitz operator with $\varphi=\sum_{p=-\infty}^{\infty} \alpha_{p} E_{p}$ and $\psi=\sum_{q=-\infty}^{\infty} \beta_{q} E_{q} \in$ $L^{\infty}(b \Omega)$. If, for all nonnegative integers m and l,

$$
\begin{equation*}
\sum_{p=-\infty}^{-1} \alpha_{m+1+p}\left\langle E_{p} E_{0}, E_{0}\right\rangle=\sum_{q=-\infty}^{-1} \beta_{-l-1+q}\left\langle E_{q} E_{0}, E_{0}\right\rangle=0 \tag{5.8}
\end{equation*}
$$

then either

$$
\varphi=\sum_{p=-\infty}^{0} \alpha_{p} E_{p}\left(\text { which is in } H^{2}(b \Omega)^{\perp}\right)
$$

or

$$
\psi=\sum_{q=0}^{\infty} \beta_{q} E_{q}\left(\text { which is in } H^{2}(b \Omega)\right) .
$$

In particular, in this case either $\varphi-\alpha_{0} c_{00} S_{a}$ is in the orthogonal complement $H^{2}(b \Omega)^{\perp}$ or ψ is holomorphic in $H^{2}(b \Omega)$.

Remark 5.5. When Ω is the unit disc and the base point a is the origin $a=0$ in the plane, this result is exactly the same as the one of Brown and Halmos [4]. In fact, for this case, $S_{0}=\frac{1}{2 \pi}, G_{0}=\frac{1}{2 \pi z}, f_{0}=z, c_{00}=\sqrt{2 \pi}, E_{p}=\frac{1}{\sqrt{2 \pi}} z^{p}, p \in \mathbb{Z}$ and thus it is easy to see that for all $p \leq-1,\left\langle E_{p} E_{0}, E_{0}\right\rangle=0$ and hence the equation (5.8) trivially holds. Notice in particular that in this case, either the symbol φ becomes a co-analytic and the symbol ψ is analytic.

Proof of Corollary 5.4. When Ω is simply connected, for $m=k_{m}, l=k_{l}$, the equation (5.7) becomes

$$
\begin{aligned}
& \left(\alpha_{m+1} c_{00}^{3} S_{a}(a)^{2}+\sum_{p=-\infty}^{m} \alpha_{p}\left\langle E_{p} E_{0}, E_{m+1}\right\rangle\right) . \\
& \left(\alpha_{-l-1} c_{00}^{3} S_{a}(a)^{2}+\sum_{q=-\infty}^{-l-2} \beta_{q}\left\langle E_{q} E_{l+1}, E_{0}\right\rangle\right)=0 .
\end{aligned}
$$

Thus by using $\left\langle E_{p} E_{0}, E_{m+1}\right\rangle=\left\langle E_{p-m-1} E_{0}, E_{0}\right\rangle$ and $\left\langle E_{q} E_{l+1}, E_{0}\right\rangle=\left\langle E_{q+l+1} E_{0}\right.$, $\left.E_{0}\right\rangle$ and letting $\widetilde{p}=p-m-1$ and $\widetilde{q}=q+l+1$, we obtain

$$
\begin{aligned}
& \left(\alpha_{m+1} c_{00}^{3} S_{a}(a)^{2}+\sum_{\widetilde{p}=-\infty}^{-1} \alpha_{\widetilde{p}+m+1}\left\langle E_{\widetilde{p}} E_{0}, E_{0}\right\rangle\right) \\
& \left(\alpha_{-l-1} c_{00}^{3} S_{a}(a)^{2}+\sum_{\widetilde{q}=-\infty}^{-1} \beta_{\widetilde{q}-l-1}\left\langle E_{\widetilde{q}} E_{0}, E_{0}\right\rangle\right)=0
\end{aligned}
$$

Hence if the equation (5.8) holds,

$$
\alpha_{m+1} c_{00}^{3} S_{a}(a)^{2} \alpha_{-l-1} c_{00}^{3} S_{a}(a)^{2}=0,
$$

so for all $m, l \geq 0, \alpha_{m+1} \alpha_{-l-1}=0$ and hence $\alpha_{p}=0$ for $p \geq 1$ and $\beta_{q}=0$ for $q \leq-1$, which proves the Corollary 5.4.

References

[1] S. Bell, Solving the Dirichlet problem in the plane by means of the Cauchy integral, Indiana Univ. Math. J. 39 (1990), no. 4, 1355-1371.
[2] , The Szegő projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), no. 1, 1-26.
[3] _ Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, J. Anal. Math. 78 (1999), 329-344.
[4] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89-102.
[5] Y.-B. Chung, Classification of Toeplitz Operators on Hardy spaces of bounded domains in the plane, Math. Notes (to appear).
[6] P. R. Garabedian, Schwarz's lemma and the Szegő kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35.

Young-Bok Chung
Department of Mathematics
Chonnam National University
Gwanguu 61186, Korea
E-mail address: ybchung@jnu.ac.kr

[^0]: Received July 21, 2016; Accepted November 7, 2016.
 2010 Mathematics Subject Classification. Primary 47B35, 30C40.
 Key words and phrases. Toeplitz operator, Toeplitz matrices, Laurent operator, Hardy space, Ahlfors map, Szego kernel.

