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MATRICES OF TOEPLITZ OPERATORS ON HARDY

SPACES OVER BOUNDED DOMAINS

Young-Bok Chung

Abstract. We compute explicitly the matrix represented by the Toeplitz
operator on the Hardy space over a smoothly finitely connected bounded
domain in the plane with respect to special orthonormal bases consisting
of the classical kernel functions for the space of square integrable functions
and for the Hardy space. The Fourier coefficients of the symbol of the
Toeplitz operator are obtained from zeroth row vectors and zeroth column
vectors of the matrix. And we also find some condition for the product
of two Toeplitz operators to be a Toeplitz operator in terms of matrices.

1. Introduction

One of the reasons that theory about Toeplitz operators on the Hardy
space over the unit disc U has been well-developed so far is that the set
A = {zk | k ∈ Z} and the subset B = {zk | k ≥ 0} of monomials are orthonormal
bases for the L2 space L2(bU) and the Hardy space H2(bU) respectively under
the normalized Lebesgue measure. In particular Brown and Halmos classified
Toeplitz operators completely in terms of Toeplitz matrices in the case of the
unit disc (See [4]). When ϕ ∈ L∞(bU) is the symbol of the Toeplitz operator
Tϕ on H2(bU) represented by the Fourier series ϕ(z) =

∑

∞

k=−∞
αkz

k with

αk = 〈ϕ, zk〉, the matrix [Tϕ] of Tϕ with respect to the orthonormal basis B is
easily formulated as the identity

[Tϕ]ml = αm−l.

For general (even simply connected) domains, computation of the matrix is
not that simple. The author in [5], for any C∞ smoothly finitely connected
bounded domain Ω, constructed a corresponding orthonormal basis AΩ for
L2(bΩ) explicitly which consists of the Szegő kernel, the Garabedian kernel
and the Ahlfors map. In this case, the matrix [Tϕ] with respect to the basis AΩ

turned out to be a Toeplitz matrix of order n where n is the finite connectivity
of Ω. However recapturing the Fourier coefficients of the symbol ϕ from the
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matrix [Tϕ] is very difficult in general unlike the unit disc. On the other hand,
the product of two Toeplitz operators is not a Toeplitz operator in general even
in the unit disc and in fact such a problem depends heavily on symbols .

In this paper, we compute the matrix [Tϕ] over a bounded domain and
expand each entry of the matrix explicitly as an infinite series whose summation
runs from −∞ to a specified number so that its corresponding term is non-zero
possibly, in order to get a key relation between the symbol and the matrix. It
will then turn out that the 0-th row vector and the 0-th column vector of the
matrix represent all Fourier coefficients of the symbol of the Toeplitz operator.
In the final section we find a necessary condition for the product TϕTψof two
Toeplitz operators to be a Toeplitz operator in terms of matrices and this
condition will imply, for the case of the unit disc, that the former symbol ψ
becomes analytic and the latter symbol ϕ becomes co-analytic as we know.

2. Preliminaries and notes

Throughout the paper, we assume, unless otherwise specified, that Ω is a
finitely connected bounded domain in the plane with C∞ smooth boundary
and T is the unit tangent vector function on bΩ pointing in the direction of the
standard orientation of bΩ.

Let L2(bΩ) be the space of square integrable functions on bΩ with the inner
product defined by

〈u, v〉 =

∫

bΩ

u v ds,

where ds is the differential element of arc length on the boundary bΩ of Ω.
Let H2(bΩ) denote the space of holomorphic functions on Ω with L2-boundary
values in bΩ which is called the classical Hardy space. Since H2(bΩ) is a
closed subspace of L2(bΩ), there exists the orthogonal projection of L2(bΩ)
onto H2(bΩ) called the Szegő projection which is denoted by

P : L2(bΩ) → H2(bΩ).

Let S(z, w) be the kernel for the Szegő projection which is called the Szegő
kernel that has the reproducing property

Pu(a) = 〈u, S(·, a)〉 =

∫

bΩ

S(a, z)u(z)dsz

for u ∈ L2(bΩ) and for a ∈ Ω.
Let a ∈ Ω be fixed. Then it is easy to see from the Cauchy integral formula

that

S(z, a) = P (Ca)(z),

where Ca(z) =
1

2πi
T (z)
z−a

is the Cauchy kernel (where “bar” means the complex

conjugate). We need another function G(z, a) which is called the Garabedian
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kernel defined by

G(z, a) =
1

2π(z − a)
+ P

(

iCaT
)

(z).

In this paper we often use the notations Sa(z) = S(z, a) and Ga(z) = G(z, a)
for convenience when the functions S(z, a) and G(z, a) of two variables z and
a are thought of functions of the first variable z for the second variable a fixed.

There are many important (but well-known) properties of the Szegő kernel
and the Garabedian kernel to which are often referred in this article and so we
list some of them. These properties can be found in [1] and [2]. For a ∈ Ω
fixed, Sa is a holomorphic function in H2(bΩ) and for z ∈ Ω fixed, S(z, a) is
anti-holomorphic in a ∈ Ω. The function S(z, a) is a C∞ smooth function up
to Ω × Ω minus the diagonal of the boundary bΩ. For fixed a ∈ Ω, G(z, a)
is a meromorphic function on Ω with a single simple pole at z = a having
residue 1

2π which extends C∞ smoothly up to the boundary of Ω. Note that

G(z, a) never vanishes for all (z, a) ∈ Ω× Ω with z 6= a. For a and b in Ω with

a 6= b, S(a, b) = S(b, a) and G(a, b) = −G(b, a). One of the most important
properties about the Szegő kernel and the Garabedian kernel with which two
kernel functions are interchangeable each other on the boundary is the identity

(2.1) G(z, a) = i S(z, a) T (z), (z, a) ∈ bΩ× Ω.

Now in order to construct an orthonormal basis for L2-space, we introduce a
conformal map which plays a fundamental role such as the identity function on
the unit disc. Suppose that Ω is n-connected and let a be in Ω. The function
fa defined on Ω by

fa(z) =
S(z, a)

G(z, a)

is an n to 1 proper holomorphic function mapping Ω onto the unit disc U which
is called the Ahlfors map associated to the pair (Ω, a) (see [6]). The Ahlfors map
fa satisfies the properties fa(a) = 0, f ′

a(a) > 0 solving the extremal problem of
maximizing h′(a) among all holomorphic functions h mapping Ω into the unit
disc making h′(a) real valued. fa has n zeroes in Ω and in fact, it turned out
that for all but finitely many points a of Ω, all other n− 1 zeroes of fa become
simple zeroes. Since G(z, a) never vanishes in Ω as a function of z for fixed a,
all other n− 1 zeroes are given by zeroes of Sa. (Refer to [2], [3]). For a ∈ Ω
fixed, let a = a0, a1, a2, . . . , an−1 be the zeroes of fa. When n = 1, i.e., if Ω
is a simply connected domain, the function fa is just the Riemann mapping
function associated to (Ω, a).

For ϕ ∈ L∞(bΩ), the operator Lϕ defined on L2(bΩ) by

Lϕ(u) = ϕu, u ∈ L2(bΩ).

is called the Laurent operator with symbol ϕ and the operator Tϕ defined on
H2(bΩ) by

Tϕ(h) = P (ϕh), h ∈ H2(bΩ).
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is called the Toeplitz operator with symbol ϕ. Like the unit disc case, it is easy
to see that T ∗

ϕ = Tϕ and Tα1ϕ+α2ψ = α1Tϕ+α2Tψ for constants α1, α2 and for
ϕ, ψ ∈ L∞(bΩ).

A two-way infinite matrix A = [aml],m, l = 0,±1,±2, . . . is called a Laurent
matrix of order k ∈ N if

am+k,l+k = am,l, m, l = 0,±1,±2, . . . .

Similarly a one-way infinite matrix B = [bml],m, l = 0, 1, 2, . . . is called a
Toeplitz matrix of order k if

bm+k,l+k = bm,l, m, l = 0, 1, 2, . . . .

3. Previous results on Toeplitz operators

In this section, we collect previous results which was mostly proved in [5]
in order to refer to known results with consistent notations and to make a
development further. The following proposition is about construction of an
orthonormal basis for L2(bΩ).

Proposition 3.1. Suppose that Ω is a bounded n-connected domain with C∞

smooth boundary. Let a be fixed in Ω and let a1, a2, . . . , an−1 be distinct simple

zeroes of Sa. Let fa be the Ahlfors map associated to the pair (Ω, a). Let Saj
and Gaj be the Szegő kernels and Garabedian kernels associated to the points

aj, respectively for j = 0, 1, . . . , n− 1 with a0 = a. Then

(1) the set BH = {Sajf
k
a : j = 0, 1, . . . , n − 1; k ≥ 0} is a basis for

H2(bΩ),
(2) the set BH⊥ = {Gajf

−k
a : j = 0, 1, . . . , n − 1, k ≥ 0} is a basis for

H2(bΩ)⊥,
(3) the set BL = {Sajf

k
a , Gajf

−k
a : j = 0, 1, . . . , n− 1; k ≥ 0} is a basis

for L2(bΩ).

We can apply the Gram-Schmidt orthonormalization to the bases in Propo-
sition 3.1 to get an orthonormal basis for L2(bΩ).

Proposition 3.2. Suppose that Ω is a bounded n-connected domain with C∞

smooth boundary. Let a be fixed in Ω and let a1, a2, . . . , an−1 be distinct simple

zeroes of Sa. Let fa be the Ahlfors map associated to the pair (Ω, a). Let Saj
and Gaj be the Szegő kernels and Garabedian kernels associated to the points

aj, respectively for j = 0, 1, . . . , n− 1 with a0 = a. Then

(1) the set OL = {Ekn+j : j = 0, 1, . . . , n − 1; k ≥ 0} ∪ {E−kn−j :
j = 0, 1, . . . , n− 1; k ≥ 0,−kn− j ≤ −1} is an orthonormal basis for

L2(bΩ) where

Ekn+j =

j
∑

i=0

cijSaif
k
a for kn+ j ≥ 0,
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E−kn−j = (1− δ
j
0)

j−1
∑

i=0

ci,j−1Gaif
−k
a + δ

j
0

n−1
∑

i=0

ci,n−1Gaif
−k+1
a

for − kn− j ≤ −1

and cij , 0 ≤ i ≤ j ≤ n−1 are constants with c00 =
√

S(a, a)
−1

obtained

by the Gram-Schmidt orthonormalization to the basis BH for the order

of Saf
k
a , Sa1f

k
a , . . . , San−1

fka , k = 0, 1, . . . and δj0 is the Kronecker delta

and

(2) the set OH = {Ekn+j : k ≥ 0; j = 0, 1, . . . , n− 1} is an orthonormal

basis for H2(bΩ).

Observe from orthogonality of Sa with Saj for j ≥ 1 and the Gram-Schmidt
orthonormalization that c0j = 0 for j = 1, 2, . . . , n − 1 and ckk > 0 for k =
0, 1, . . . , n− 1.

The Toeplitz operator Tfa with symbol fa as the Ahlfors map is then a shift
operator of multiplicity n provided the base domain Ω is n-connected.

Proposition 3.3. Suppose that Ω is a bounded n-connected domain with C∞

smooth boundary. Let a ∈ Ω be fixed and let fa be the Ahlfors map. Then

Tfa(Em) = Em+n for m ≥ 0.

A one-way infinite matrix [aij ], i, j ≥ 0 is called a Toeplitz matrix of order
n if

∀i, j ≥ 0, ai+n,j+n = aij .

Then it is easy to see that given ϕ ∈ L∞(bΩ), the matrix [Tϕ] of Tϕ with
respect to the basis OH is a Toeplitz matrix of order n, i.e.,

〈Tϕ(Em+n), El+n〉 = 〈Tϕ(Em), El〉 for m, l ≥ 0

when Ω is n-connected. On the other hand, suppose that Ω is a bounded n-
connected domain with C∞ smooth boundary and suppose that given a ∈ Ω,
a bounded operator A : H2(bΩ) → H2(bΩ) satisfies the following commuting
condition

Cond(C)

{

A TSaj
= TSaj

A, j = 0, 1, . . . , n− 1,

A Tfaj
= Tfaj

A, j = 1, 2, . . . , n− 1.

Observe that the index j = 0 is excluded in the second identity. Then we have
the following classification for the Toeplitz operators.

Proposition 3.4. Suppose that Ω is a bounded n-connected domain with C∞

smooth boundary. Let a be fixed in Ω and let a1, a2, . . . , an−1 be distinct simple

zeroes of Sa. If a bounded operator A : H2(bΩ) → H2(bΩ) satisfies the com-

muting condition Cond(C) and if A induces a Toeplitz matrix of order n with

respect to OH, then A is a Toeplitz operator.
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4. Matrices of Toeplitz operators

Now we are ready to work on matrices of Toeplitz operators. We sort all
integers according to the Euclidean division divided by connectivity of the
domain.

Definition. We say that an integer of the form r = αn+ β with α ∈ Z, |β| ≤
n − 1 is written in the standard form if either both α ≥ 0 and β ≥ 0 or both
α < 0 and β ≤ 0.

We now compute inner products 〈EpEl, Em〉 for various positive or negative
integers p, l and m’s. Since each case is mentioned in this contents, detailed
computations are given case by case.

Lemma 4.1. Suppose that Ω is a bounded n-connected domain with C∞ smooth

boundary. Let a be fixed in Ω and let a1, a2, . . . , an−1 be distinct simple zeroes of

Sa. Suppose that p = kn+j, l = kln+jl,m = kmn+jm with k, kl, km, j, jl, jm ∈
Z, |j|, |jl|, |jm| ≤ n − 1 are all written in standard form. Let cα,β’s be the

constants indicated in Proposition 3.2.

(1) If p ≥ 0, l ≥ 0,m ≥ 0,

〈EpEl, Em〉 =

j
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

cijcµjlcνjm〈SaiSaµf
k+kl−km
a , Saν 〉.

(2) If p ≥ 0, l ≥ 0,m < 0,

〈EpEl, Em〉

= (1− δ
jm
0 )

j
∑

i=0

jl
∑

µ=0

−jm−1
∑

ν=0

cijcµjlcν,−jm−1〈SaiSaµf
k+kl−km
a , Gaν 〉

+ δ
jm
0

j
∑

i=0

jl
∑

µ=0

n−1
∑

ν=0

cijcµjlcν,n−1〈SaiSaµf
k+kl−km+1
a , Gaν 〉.

(3) If p ≥ 0, l < 0,m ≥ 0,

〈EpEl, Em〉

= (1− δ
jl
0 )

j
∑

i=0

−jl−1
∑

µ=0

jm
∑

ν=0

cijcµ,−jl−1 cνjm〈SaiGaµf
k+kl−km
a , Saν 〉

+ δ
jl
0

j
∑

i=0

n−1
∑

µ=0

jm
∑

ν=0

cijcµ,n−1 cνjm〈SaiGaµf
k+kl−km+1
a , Saν 〉.

(4) If p ≥ 0, l < 0,m < 0,

〈EpEl, Em〉
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= (1− δ
jl
0 )(1 − δ

jm
0 )

j
∑

i=0

−jl−1
∑

µ=0

−jm−1
∑

ν=0

cijcµ,−jl−1cν,−jm−1 ·

〈SaiGaµf
k+kl−km
a , Gaν 〉

+ (1 − δ
jl
0 )δ

jm
0

j
∑

i=0

−jl−1
∑

µ=0

n−1
∑

ν=0

cijcµ,−jl−1cν,n−1〈SaiGaµf
k+kl−km+1
a , Gaν 〉

+ δ
jl
0 (1− δ

jm
0 )

j
∑

i=0

n−1
∑

µ=0

−jm−1
∑

ν=0

cijcµ,n−1cν,−jm−1〈SaiGaµf
k+kl−km+1
a , Gaν 〉

+ δ
jl
0 δ

jm
0

j
∑

i=0

n−1
∑

µ=0

n−1
∑

ν=0

cijcµ,n−1cν,n−1〈SaiGaµf
k+kl−km+2
a , Gaν 〉.

(5) If p < 0, l ≥ 0,m ≥ 0

〈EpEl, Em〉

= (1− δ
j
0)

−j−1
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

ci,−j−1cµjlcνjm〈GaiSaµf
k+kl−km
a , Saν 〉

+ δ
j
0

n−1
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

ci,n−1cµjlcνjm〈GaiSaµf
k+kl−km+1
a , Saν 〉.

(6) If p < 0, l ≥ 0,m < 0,

〈EpEl, Em〉

= (1− δ
j
0)(1 − δ

jm
0 )

−j−1
∑

i=0

jl
∑

µ=0

−jm−1
∑

ν=0

ci,−j−1cµjlcν,−jm−1 ·

〈GaiSaµf
k+kl−km
a , Gaν 〉

+ (1− δ
j
0)δ

jm
0

−j−1
∑

i=0

jl
∑

µ=0

n−1
∑

ν=0

ci,−j−1cµjlcν,n−1〈GaiSaµf
k+kl−km+1
a , Gaν 〉

+ δ
j
0(1 − δ

jm
0 )

n−1
∑

i=0

jl
∑

µ=0

−jm−1
∑

ν=0

ci,n−1cµjlcν,−jm−1〈GaiSaµf
k+kl−km+1
a , Gaν 〉

+ δ
j
0δ
jm
0

n−1
∑

i=0

jl
∑

µ=0

n−1
∑

ν=0

ci,n−1cµjlcν,n−1〈GaiSaµf
k+kl−km+2
a , Gaν 〉.

(7) If p < 0, l < 0,m ≥ 0,

〈EpEl, Em〉
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= (1 − δ
j
0)(1− δ

jl
0 )

−j−1
∑

i=0

−jl−1
∑

µ=0

jm
∑

ν=0

ci,−j−1 cµ,−jl−1cνjm ·

〈GaiGaµf
k+kl−km
a , Saν 〉

+ (1− δ
j
0)δ

jl
0

−j−1
∑

i=0

n−1
∑

µ=0

jm
∑

ν=0

ci,−j−1 cµ,n−1cν,jm〈GaiGaµf
k+kl−km+1
a , Saν 〉

+ δ
j
0(1− δ

jl
0 )

n−1
∑

i=0

−jl−1
∑

µ=0

jm
∑

ν=0

ci,n−1 cµ,−jl−1cν,−jm−1 ·

〈GaiGaµf
k+kl−km+1
a , Saν 〉

+ δ
j
0δ
jl
0

n−1
∑

i=0

n−1
∑

µ=0

jm
∑

ν=0

ci,n−1 cµ,n−1cνjm〈GaiGaµf
k+kl−km+2
a , Saν 〉.

(8) If p < 0, l < 0,m < 0,

〈EpEl, Em〉

= (1− δ
j
0)(1 − δ

jl
0 )(1 − δ

jm
0 )

−j−1
∑

i=0

−jl−1
∑

µ=0

−jm−1
∑

ν=0

ci,−j−1 cµ,−jl−1cν,−jm−1 ·

〈GaiGaµf
k+kl−km
a , Gaν 〉

+ (1− δ
j
0)(1− δ

jl
0 )δ

jm
0 ·

−j−1
∑

i=0

−jl−1
∑

µ=0

n−1
∑

ν=0

ci,−j−1 cµ,−jl−1cν,n−1〈GaiGaµf
k+kl−km+1
a , Gaν 〉

+ (1− δ
j
0)δ

jl
0 (1− δ

jm
0 ) ·

−j−1
∑

i=0

n−1
∑

µ=0

−jm−1
∑

ν=0

ci,−j−1 cµ,n−1cν,n−1〈GaiGaµf
k+kl−km+1
a , Gaν 〉

+ (1− δ
j
0)δ

jl
0 δ

jm
0 ·

−j−1
∑

i=0

n−1
∑

µ=0

n−1
∑

ν=0

ci,−j−1 cµ,n−1cν,n−1〈GaiGaµf
k+kl−km+2
a , Gaν 〉

+ δ
j
0(1− δ

jl
0 )(1 − δ

jm
0 )

n−1
∑

i=0

−jl−1
∑

µ=0

−jm−1
∑

ν=0

ci,n−1 cµ,−jl−1cν,−jm−1 ·

〈GaiGaµf
k+kl−km+1
a , Gaν 〉

+ δ
j
0(1− δ

jl
0 )δ

jm
0 ·



MATRICES OF TOEPLITZ OPERATORS 1429

n−1
∑

i=0

−jl−1
∑

µ=0

n−1
∑

ν=0

ci,n−1 cµ,−jl−1cν,n−1〈GaiGaµf
k+kl−km+2
a , Gaν 〉

+ δ
j
0δ
jl
0 (1− δ

jm
0 ) ·

n−1
∑

i=0

n−1
∑

µ=0

−jm−1
∑

ν=0

ci,n−1 cµ,n−1cν,−jm−1〈GaiGaµf
k+kl−km+2
a , Gaν 〉

+ δ
j
0δ
jl
0 δ

jm
0 ·

n−1
∑

i=0

n−1
∑

µ=0

n−1
∑

ν=0

ci,n−1 cµ,n−1cν,n−1〈GaiGaµf
k+kl−km+3
a , Gaν 〉.

Proof. The proof is straightforward by using that fa(z)
−1 = fa(z) on bΩ. Note

also that on the boundary of Ω, Gbfb = Sb for b ∈ Ω. �

Since we often use inqualities of integers in the form of Euclidean division
by n, we need the following lemma which is easily proved case by case.

Lemma 4.2. Let n be a positive integer. Suppose that k, ˜k, j,˜j are all integers

with |j|, |˜j| ≤ n− 1 that satisfy the inequality

kn+ j ≥ ˜kn+ ˜j.

Then

k − ˜k



















≥ 2 for − 2n+ 2 ≤ j − ˜j ≤ −n− 1,

≥ 1 for − n ≤ j − ˜j ≤ −1,

≥ 0 for 0 ≤ j − ˜j ≤ n− 1,

≥ −1 for n ≤ j − ˜j ≤ 2n− 2.

Theorem 4.3. Let n be a positive integer and suppose that p = kn + j, l =
kln+ jl,m = kmn+ jm are all integers written in standard form. Then

(1) if r1 and r2 are integers for which (k+ r1)n+ j, (kl + r2)n+ jl, (km+
r1 + r2)n+ jm are all in standard form,

〈EpEl, Em〉 = 〈Ep+r1nEl+r2n, Em+(r1+r2)n〉,

(2) 〈EpEl, Em〉 = 0 for k ≥ km − kl + 3,
(3) 〈EpEl, Em〉 = 0 for k ≥ km − kl + 2 and m ≥ 0, l ≥ 0.

Proof. For (1), suppose that (k+ r1)n+ j, (kl + r2)n+ jl, (km+ r1 + r2)n+ jm
are all in standard form. Since adding r1n, r2n, (r1 + r2)n to p, l,m, respec-
tively does not change remainders, the quotients and remainders of p+ r1n, l+
r1n,m+(r1+r2)n have the same signs (positiveness or negativeness) as those of
p, l,m, respectively. Thus when the inner product 〈Ep+r1nEl+r2n, Em+(r1+r2)n〉
is expanded according to Lemma 4.1, all expressions except for the terms
containing the Ahlfors map fa are exactly identical to those for 〈EpEl, Em〉.
On the other hand, the exponents for the Ahlfors map fa in the expansion
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of 〈EpEl, Em〉 contain k + kl − km and the exponents in the inner product
〈Ep+r1nEl+r2n, Em+(r1+r2)n〉 also contain (k+ r1)+(kl+ r2)− (km+ r1+ r2) =
k+kl−km in all cases and hence eventually two expansions of 〈EpEl, Em〉 and
〈Ep+r1nEl+r2n, Em+(r1+r2)n〉 are the same.

For (2), first observe that Saµ is holomorphic inH2(bΩ) andGaµ is meromor-
phic with single simple pole at z = aµ for µ = 0, 1, . . . , n−1. Note also that faν
has zeroes at z = a and z = aν for ν = 0, 1, . . . , n−1. Since a = a0, a1, . . . , an−1

are all zeroes of fa, Gaµfa can be extended to be holomorphic at z = aµ for
all µ = 0, 1, . . . , n − 1 and in particular Gaµfaµ = Saµ for µ = 0, 1, . . . , n − 1.
We now look at inner products expressed in Lemma 4.1 carefully and compute
selected ones for the sake of simplicity.

〈SaiSaµf
k+kl−km
a , Saν 〉

= Sai(aν)Saµ(aν)f
k+kl−km
a (aν) = 0 if k + kl − km ≥ 1,

〈SaiSaµf
k+kl−km+1
a , Gaν 〉 = 〈SaiSaµfaνf

k+kl−km+1
a , Saν 〉

= Sai(aν)Saµ(aν)faν (aν)f
k+kl−km+1
a (aν) = 0 if k + kl − km + 1 ≥ 0,

〈SaiGaµf
k+kl−km+1
a , Saν 〉 = Sai(aν)(Gaµfa)(aν)f

k+kl−km
a (aν)

= 0 if k + kl − km ≥ 1,

〈SaiGaµf
k+kl−km+2
a , Gaν 〉 = 〈Sai(Gaµfa)faνf

k+kl−km+1
a , Saν 〉

= Sai(aν)(Gaµfa)(aν)faν (aν)f
k+kl−km+1
a (aν)

= 0 if k + kl − km + 1 ≥ 0,

〈GaiGaµf
k+kl−km
a , Saν 〉 = 〈(Gaifa)(Gaµfa)f

k+kl−km−2
a , Saν 〉

= (Gaifa)(aν)(Gaµfa)(aν)f
k+kl−km−2
a (aν) = 0 if k + kl − km − 2 ≥ 1.

Hence all cases vanish if k ≥ km − kl + 3.
Similarly, (3) is proved easily using Lemma 4.1-(1),(5). In fact, suppose that

m, l ≥ 0 and that p = kn+ j and k ≥ km − kl + 2. If kn+ j ≥ 0, then

〈EpEl, Em〉 =

j
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

cijcµjlcνjm〈SaiSaµf
k+kl−km
a , Saν 〉

=

j
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

cijcµjlcνjmSai(aν)Saµ(aν)f
k+kl−km
a (aν) = 0

because k + kl − km ≥ 1 and fa(a) = 0. If kn+ j < 0, then again

〈EpEl, Em〉

= (1− δ
j
0)

−j−1
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

ci,−j−1cµjlcνjm〈GaiSaµf
k+kl−km
a , Saν 〉
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+ δ
j
0

n−1
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

ci,n−1cµjlcνjm〈GaiSaµf
k+kl−km+1
a , Saν 〉

= (1− δ
j
0)

−j−1
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

ci,−j−1cµjlcνjm(Gaifa)(aν)Saµ(aν)f
k+kl−km−1
a (aν)

+ δ
j
0

n−1
∑

i=0

jl
∑

µ=0

jm
∑

ν=0

ci,n−1cµjlcνjm(Gaifa)(aν)Saµ(aν)f
k+kl−km
a (aν) = 0

because both k+ kl − km − 1 and k+ kl − km are bigger that 0 and fa(a) = 0.
Hence for either case, the inner product 〈EpEl, Em〉 must be zero. Thus the
proof is done. �

The vanishing property (2) and (3) in Theorem 4.3 immediately proves the
following theorem which computes the matrices [Lϕ] and [Tϕ] of the Laurent
and the Toeplitz operators.

Theorem 4.4. Let n be a positive integer. Suppose that Ω is a bounded n-

connected domain with C∞ smooth boundary. Let a be fixed in Ω and let

a1, a2, . . . , an−1 be distinct simple zeroes of Sa. Let ϕ =
∑

∞

p=−∞
αpEp be in

L∞(bΩ). Suppose that l = kln + jl,m = kmn + jm are integers written in

standard form. Then

(1) the entry of m-th row and l-th column of the matrix [Lϕ] of the Laurent

operator Lϕ with respect to the orthonormal basis OL is equal to

[Lϕ]m,l =

(km−kl+2)n+n−1
∑

p=−∞

αp〈EpEl, Em〉,

(2) for m, l ≥ 0 the entry of m-th row and l-th column of the matrix [Tϕ]
of the Toeplitz operator Tϕ with respect to the orthonormal basis OH
is equal to

[Tϕ]m,l =

(km−kl+1)n+n−1
∑

p=−∞

αp〈EpEl, Em〉.

Now we want to find a relation between the one-way infinite matrix [Tϕ] and
the Fourier coefficients 〈ϕ,Ep〉 for the symbol ϕ. First we compute the entry
of the 0-th row and the 0-th column.

Corollary 4.5. Let n be a positive integer. Suppose that Ω is a bounded

n-connected domain with C∞ smooth boundary. Let a be fixed in Ω and let

a1, a2, . . . , an−1 be distinct simple zeroes of Sa. Let ϕ =
∑

∞

p=−∞
αpEp be in

L∞(bΩ). Then the entry of 0-th row and 0-th column of the matrix [Tϕ] with
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respect to the orthonormal basis OH is equal to

[Tϕ]0,0 = α0c
3
00Sa(a)

2 +

n−1
∑

j=1

α−j

j−1
∑

i=0

ci,j−1c
2
00〈GaiSa, Sa〉

+

−n
∑

p=−∞

αp〈EpE0, E0〉.

Proof. We split the infinite sum of Theorem 4.4 into three parts as

[Tϕ]0,0 =
1·n+n−1
∑

p=0

αp〈EpE0, E0〉

+

−1
∑

p=−(n−1)

αp〈EpE0, E0〉+

−n
∑

p=−∞

αp〈EpE0, E0〉.

The first term is then by Lemma 4.1-(1) equal to

1
∑

k=0

n−1
∑

j=0

αkn+j〈Ekn+jE0, E0〉 =

1
∑

k=0

n−1
∑

j=0

αkn+j

j
∑

i=0

cijc
2
00〈SaiSaf

k
a , Sa〉

=

n−1
∑

j=0

αj

j
∑

i=0

cijc
2
00Sai(a)Sa(a) =

n−1
∑

j=0

αjc0jc
2
00Sa(a)

2 = α0c
3
00Sa(a)

2.

In the proof we used the properties that fa(a) = 0 and Sai(a) = 0, c0j = 0 for
i ≥ 1. The second term in the expression of [Tϕ]0,0 above is nothing but the
case k = kl = km = 0 in Lemma 4.1(5). Hence we are done. �

In order to differentiate entries of the 0-th column vector of the matrix [Tϕ]
which correspond to remainders and quotients in the Euclidean division, we
first compute [Tϕ]jm,0 for jm = 1, 2, . . . , n− 1 and n ≥ 2.

Corollary 4.6. Let n ≥ 2 be an integer. Suppose that Ω is a bounded n-

connected domain with C∞ smooth boundary. Let a be fixed in Ω and let

a1, a2, . . . , an−1 be distinct simple zeroes of Sa. Let ϕ =
∑

∞

p=−∞
αpEp be in

L∞(bΩ). Then the entry of jm-th row and 0-th column of the matrix [Tϕ] with
1 ≤ jm ≤ n− 1 with respect to the orthonormal basis OH is equal to

[Tϕ]jm,0 =

n−1
∑

j=1

α−j

j−1
∑

i=0

jm
∑

ν=0

ci,j−1c00cνjm〈GaiSa, Saν 〉

+
−n
∑

p=−∞

αp〈EpE0, Em〉.

Proof. Let jm be an integer with 1 ≤ jm ≤ n − 1. Suppose that p = kn + j

is written in standard form and 0 ≤ p ≤ jm + 2n− 1 = 2n + (jm − 1). Since
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0 ≤ j ≤ n− 1 and 0 ≤ jm − 1 ≤ n− 2, −n+ 1 ≤ (jm − 1)− j ≤ n− 2. It thus
follows from Lemma 4.2 and Lemma 4.1 that 2− k ≥ 0 and hence that

jm+2n−1
∑

p=0

αp〈EpE0, Ejm〉 =
2
∑

k=0

n−1
∑

j=0

αkn+j

j
∑

i=0

jm
∑

ν=0

cijc00cνjm〈SaiSaf
k
a , Saν 〉

=

n−1
∑

j=0

αj

j
∑

i=0

jm
∑

ν=0

cijc00cνjmSai(aν)Sa(aν) =

n−1
∑

j=0

αj

j
∑

i=0

cijc00c0jmSai(a)Sa(a)

=

n−1
∑

j=0

αjc0jc00c0jmSa(a)
2 = α0c

2
00c0jmSa(a)Sa(a) = δ

jm
0 α0c

3
00Sa(a)

2

which is equal to zero because jm ≥ 1. Hence the proof is done by Theorem 4.4
and Lemma 4.1. �

Next we compute the entry [Tϕ]m,0 for m ≥ n.

Corollary 4.7. Let n be a positive integer. Suppose that Ω is a bounded

n-connected domain with C∞ smooth boundary. Let a be fixed in Ω and let

a1, a2, . . . , an−1 be distinct simple zeroes of Sa. Let ϕ =
∑

∞

p=−∞
αpEp be in

L∞(bΩ). Then the entry of m-th row and 0-th column of the matrix [Tϕ] with
m = kmn + jm, km ≥ 1, 0 ≤ jm ≤ n − 1 with respect to the orthonormal basis

OH is equal to

[Tϕ]m,0 = [Tϕ]kmn+jm,0

= δ
jm
0 αkmnc

3
00Sa(a)

2 +

n−1
∑

j=1

α(km−1)n+j

j
∑

i=0

jm
∑

ν=0

cijc00cνjm〈SaiGa, Saν 〉

+

(km−1)n
∑

p=−∞

αp〈EpE0, Em〉.

Proof. Suppose that p = kn + j is written in standard form and (km + 1)n ≤
p ≤ m+ 2n− 1 = (km + 2)n+ jm − 1. Since 0 ≤ j ≤ n− 1, k ≥ km + 1. Thus
the exponent k−km is at least 1 in Lemma 4.1-(1) and hence 〈EpE0, Em〉 must
be zero. It follows from Theorem 4.4 that

[Tϕ]m,0 =

n−1
∑

j=0

αkmn+j

j
∑

i=0

jm
∑

ν=0

cijc00cνjm〈SaiSa, Saν 〉

+

n−1
∑

j=1

α(km−1)n+j〈E(km−1)n+jE0, Em〉+

(km−1)n
∑

p=−∞

αp〈EpE0, Em〉.

Now the first term equals

n−1
∑

j=0

αkmn+j

j
∑

i=0

jm
∑

ν=0

cijc00cνjmSai(aν)Sa(aν)
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=

n−1
∑

j=0

αkmn+j

j
∑

i=0

cijc00c0jmSai(a)Sa(a) =

n−1
∑

j=0

αkmn+jc0jc00c0jmSa(a)
2

= αkmnc
2
00c0jmSa(a)

2 = δ
jm
0 αkmnc

3
00Sa(a)

2

and the second term equals

n−1
∑

j=1

α(km−1)n+j

j
∑

i=0

jm
∑

ν=0

cijc00cνjm〈SaiSaf
km−1−km
a , Saν 〉

=

n−1
∑

j=1

α(km−1)n+j

j
∑

i=0

jm
∑

ν=0

cijc00cνjm〈SaiGa, Saν 〉

and hence the proof completes. �

Similarly we can compute 0-th row vector of the matrix [Tϕ] which produce
the Fourier coefficients with negative numbered indexes.

Corollary 4.8. Let n ≥ 2 be an integer. Suppose that Ω is a bounded n-

connected domain with C∞ smooth boundary. Let a be fixed in Ω and let

a1, a2, . . . , an−1 be distinct simple zeroes of Sa. Let ϕ =
∑

∞

p=−∞
αpEp be in

L∞(bΩ). Then the entry of 0-th row and jl-th column of the matrix [Tϕ] with
1 ≤ jl ≤ n− 1 with respect to the orthonormal basis OH is equal to

[Tϕ]0,jl =

n−1
∑

j=1

α−j

j−1
∑

i=0

jl
∑

µ=0

ci,j−1cµjlc00〈GaiSaµ , Sa〉

+

−n
∑

p=−∞

αp〈EpEjl , E0〉.

Proof. Let jl be an integer with 1 ≤ jl ≤ n − 1. Suppose that p = kn + j is
written in standard form and 0 ≤ p ≤ −jl + 2n− 1 = n + (n − jl − 1). Since
0 ≤ n− jl − 1 ≤ n− 2 and 0 ≤ j ≤ n− 1, −n+1 ≤ (n− jl − 1)− j ≤ n− 2. It
thus follows from Lemma 4.2 and Lemma 4.1 that 0 ≤ k ≤ 1 and hence that

−jl+2n−1
∑

p=0

αp〈EpEjl , E0〉 =
1
∑

k=0

n−1
∑

j=0

αkn+j

j
∑

i=0

jl
∑

µ=0

cijcµjlc00〈SaiSaµf
k
a , Sa〉

=

n−1
∑

j=0

αj

j
∑

i=0

jl
∑

µ=0

cijcµjlc00Sai(a)Saµ(a) =

n−1
∑

j=0

αj

j
∑

i=0

cijc0jlc00Sai(a)Sa(a) = 0

since c0jl = 0 for jl ≥ 1. Hence the proof of this corollary is done by Theo-
rem 4.4 and Lemma 4.1. �

Corollary 4.9. Let n be a positive integer. Suppose that Ω is a bounded

n-connected domain with C∞ smooth boundary. Let a be fixed in Ω and let

a1, a2, . . . , an−1 be distinct simple zeroes of Sa. Let ϕ =
∑

∞

p=−∞
αpEp be in
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L∞(bΩ). Then the entry of 0-th row and l-th column of the matrix [Tϕ] with
l = kln+ jl, kl ≥ 1, 0 ≤ jl ≤ n− 1 with respect to the orthonormal basis OH is

equal to

[Tϕ]0,l = [Tϕ]0,kln+jl

= χ[2,∞)(kl) α−(kl−1)n−1 δ
jl
0 c

3
00Sa(a)

2

+α−klnδ
n
1 δ

jl
0 c

3
00Sa(a)

2+

n−1
∑

j=1

α−kln−j

j−1
∑

i=0

jl
∑

µ=0

ci,j−1cµjlc00〈GaiSaµ , Sa〉

+

−(kl+1)n
∑

p=−∞

αp〈EpEl, E0〉.

Proof. Let l = kln + jl be in standard form with l ≥ 1. Suppose also that
p = kn + j is written in standard form and −(kl − 1)n ≤ p ≤ −l + 2n − 1 =
−(kl − 2)n− (jl + 1).

If jl = n− 1, then p = −(kl − 1)n and so in this case

〈EpEl, E0〉 = 〈E−(kl−1)nEkln+(n−1), E0〉 = 〈EnEn−1, E0〉

=

n−1
∑

µ=0

c00cµ,n−1c00〈SaSaµfa, Sa〉 = 0.

Here for equality of the second and third identities Theorem 4.3 is used.
Suppose that 0 ≤ jl ≤ n − 2 with n ≥ 2. If kl = 1, then 0 ≤ p = j ≤

n− jl − 1 ≤ n− 1, so

〈EpEl, E0〉 = 〈EjEn+jl , E0〉 =

j
∑

i=0

jl
∑

µ=0

cijcµjlc00〈SaiSaµfa, Sa〉 = 0.

and if kl ≥ 2, then p < 0 and it follows from the inequality −(kl− 1)n ≤ p that
k+kl−1 ≥ 0. Since 0 ≤ jl ≤ n−2 and −n+1 ≤ j ≤ 0, −n+1 ≤ −jl−1− j ≤
n−2, so it follows from the inequality p ≤ −(kl−2)n− (jl+1) and Lemma 4.2
that −kl + 2− k ≥ 0 and hence 1 ≤ k + kl ≤ 2. Thus for this case,

〈EpEl, E0〉 = (1− δ
j
0)

−j−1
∑

i=0

jl
∑

µ=0

ci,−j−1cµjlc00〈GaiSaµf
k+kl
a , Sa〉

+ δ
j
0

n−1
∑

i=0

jl
∑

µ=0

ci,n−1cµjlc00〈GaiSaµf
k+kl+1
a , Sa〉

and the second term must be zero because the function GaiSaµf
k+kl+1
a =

(Gaifa)Saµf
k+kl
a has a removable singularity at z = ai and k + kl ≥ 1. And

the first term is equal to

(1− δ
j
0)

−j−1
∑

i=0

jl
∑

µ=0

ci,−j−1cµjlc00(Gaifa)(a)Saµ(a)f
k+kl−1
a (a)
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= (1− δ
j
0)

−j−1
∑

i=0

ci,−j−1c0jlc00(Gaifa)(a)Sa(a)f
k+kl−1
a (a)

= (1− δ
j
0)c0,−j−1c0jlc00Sa(a)

2fk+kl−1
a (a)

= δk1−kl(1− δ
j
0)c0,−j−1c0jlc00Sa(a)

2

= δk1−klδ
j
−1δ

jl
0 c

3
00Sa(a)

2.

In equality of the second and the third identities, we used the fact that Gaifa
is holomorphic at z = ai and is also zero if i 6= 0 because of fa(a) = 0. Hence

−l+2n−1
∑

p=−(kl−1)n

〈EpEl, E0〉 = χ[2,∞)(kl) α−(kl−1)n−1 δ
jl
0 c

3
00Sa(a)

2.(4.1)

Next we compute 〈EpEl, E0〉 for the case k = −kl. It then follows from
Theorem 4.3 and Lemma 4.1 that

n−1
∑

j=0

〈E−kln−jEkln+jl , E0〉 =

n−1
∑

j=0

〈E−jEjl , E0〉

=
n−1
∑

j=1

j−1
∑

i=0

jl
∑

µ=0

ci,j−1cµjlc00〈GaiSaµ , Sa〉

+

n−1
∑

i=0

jl
∑

µ=0

ci,n−1cµjlc00〈GaiSaµfa, Sa〉.

And the second term from above is as before equal to

n−1
∑

i=0

ci,n−1c0jlc00(Gaifa)(a)Sa(a) = c0,n−1c0jlc00(Gafa)(a)Sa(a)

= δn1 δ
jl
0 c

3
00Sa(a)

2.

Hence
n−1
∑

j=0

α−kln−j〈E−kln−jEkln+jl , E0〉

= α−klnδ
n
1 δ

jl
0 c

3
00Sa(a)

2 +

n−1
∑

j=1

α−kln−j

j−1
∑

i=0

jl
∑

µ=0

ci,j−1cµjlc00〈GaiSaµ , Sa〉.

(4.2)

Therefore from identities (4.1) and (4.2) and from Theorem 4.4, the proof of
Corollary 4.9 completes. �

5. Matrices of products of Topeplitz operators

In the final section we work on products of Toeplitz operators which may
not be Toeplitz operators in general even for the case of the unit disc. Here we
find a necessary condition for the products to be Toeplitz operators.
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Theorem 5.1. Let n be a positive integer. Suppose that Ω is a bounded n-

connected domain with C∞ smooth boundary. Let ϕ =
∑

∞

p=−∞
αpEp and

ψ =
∑

∞

q=−∞
βqEq be symbols in L∞(bΩ). Then given nonnegative integers

m = kmn+ jm, l = kln+ jl in standard form,

(

[Tϕ][Tψ]
)

m+n,l+n

=
(

[Tϕ][Tψ]
)

m,l

+

n−1
∑

r=0

[(

n−1
∑

j=0

α(km+1)n+j

j
∑

i=0

r
∑

µ=0

jm
∑

ν=0

cijcµrcνjmSai(aν)Saµ(aν)

+

kmn+n−1
∑

p=−∞

αp〈EpEr, Em+n〉

)

·

(

n−1
∑

j=0

α−kln−j(1− δ
j
0)

j−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,j−1cµjlcνr(Gaifa)(aν)Saµ(aν)

+

n−1
∑

j=0

α−(kl+1)n−j(1− δ
j
0)

j−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,j−1cµjlcνr〈GaiSaµ , Saν 〉

+

n−1
∑

j=0

α−(kl+1)n−jδ
j
0

n−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,n−1cµjlcνr(Gaifa)(aν)Saµ(aν)

+

−(kl+2)n
∑

q=−∞

βq〈EqEl+n, Er〉

)]

.

(5.1)

Proof. Let m = kmn + jm, l = kln + jl be nonnegative integers in standard
form. Then it follows from Theorem 4.4 that

([Tϕ][Tψ])m+n,l+n =
∞
∑

r=0

[Tϕ]m+n,r[Tψ]r,l+n

=

∞
∑

r=0





(km−kr+2)n+n−1
∑

p=−∞

αp〈EpEr, Em+n〉

(kr−kl)n+n−1
∑

q=−∞

βq〈EqEl+n, Er〉





=

n−1
∑

r=0





(km+2)n+n−1
∑

p=−∞

αp〈EpEr, Em+n〉

−kln+n−1
∑

q=−∞

βq〈EqEl+n, Er〉





+
∞
∑

r=n





(km−kr+2)n+n−1
∑

p=−∞

αp〈EpEr, Em+n〉

(kr−kl)n+n−1
∑

q=−∞

βq〈EqEl+n, Er〉





(5.2)
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and as letting s = r− n, the second term from above is, by Theorem 4.3 equal
to

∞
∑

s=0

(

(km−ks+1)n+n−1
∑

p=−∞

αp〈EpEs+n, Em+n〉 ·

(ks−kl+1)n+n−1
∑

q=−∞

βq〈EqEl+n, Es+n〉

)

=

∞
∑

s=0





(km−ks+1)n+n−1
∑

p=−∞

αp〈EpEs, Em〉

(ks−kl+1)n+n−1
∑

q=−∞

βq〈EqEl, Es〉





= ([Tϕ][Tψ])m,l .

On the other hand, for 0 ≤ r, j ≤ n− 1, it is easy to see from Lemma 4.1 that

〈E(km+2)n+jEr, Em+n〉

=

j
∑

i=0

r
∑

µ=0

jm
∑

ν=0

cijcµrcνjm〈SaiSaµf
km+2−km−1
a , Saν 〉

=

j
∑

i=0

r
∑

µ=0

jm
∑

ν=0

cijcµrcνjm〈SaiSaµfa, Saν 〉 = 0

(5.3)

and

〈E−kln−jEl+n, Er〉

= (1− δ
j
0)

j−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,j−1cµjlcνr〈GaiSaµf
−kl+kl+1
a , Saν 〉

+ δ
j
0

n−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,n−1cµjlcνr〈GaiSaµf
−kl+kl+1+1
a , Saν 〉

= (1− δ
j
0)

j−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,j−1cµjlcνr(Gaifa)(aν)Saµ(aν)

(5.4)

because in the second term the function GaiSaµf
2
a = (Gaifa)Saµfa is holomor-

phic at ai and has a zero at aν .
And similarly it follows that

〈E(km+1)n+jEr, Em+n〉 =

j
∑

i=0

r
∑

µ=0

jm
∑

ν=0

cijcµrcνjm〈SaiSaµ , Saν 〉

=

j
∑

i=0

r
∑

µ=0

jm
∑

ν=0

cijcµrcνjmSai(aν)Saµ(aν)

(5.5)
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and

〈E−(kl+1)n−jEl+n, Er〉

= (1− δ
j
0)

j−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,j−1cµjlcνr〈GaiSaµ , Saν 〉

+ δ
j
0

n−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,n−1cµjlcνr〈GaiSaµfa, Saν 〉

= (1− δ
j
0)

j−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,j−1cµjlcνr〈GaiSaµ , Saν 〉

+ δ
j
0

n−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,n−1cµjlcνr(Gaifa)(aν)Saµ(aν).

(5.6)

Thus it follows from (5.3), (5.4), (5.5), and (5.6) that the first term in the last
identity of (5.2) is equal to the remainder term of (5.1) and hence the proof is
finished. �

The following corollary is an immediate consequence of Theorem 5.1.

Corollary 5.2. Let n be a positive integer. Suppose that Ω is a bounded n-

connected domain with C∞ smooth boundary. Let ϕ =
∑

∞

p=−∞
αpEp and ψ =

∑

∞

q=−∞
βqEq be symbols. If, for all nonnegative integers m = kmn + jm, l =

kln+ jl written in standard form,

n−1
∑

r=0

[(

n−1
∑

j=0

α(km+1)n+j

j
∑

i=0

r
∑

µ=0

jm
∑

ν=0

cijcµrcνjmSai(aν)Saµ(aν)

+

kmn+n−1
∑

p=−∞

αp〈EpEr, Em+n〉

)

·

(

n−1
∑

j=0

α−kln−j(1− δ
j
0)

j−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,j−1cµjlcνr(Gaifa)(aν)Saµ(aν)

+

n−1
∑

j=0

α−(kl+1)n−j(1− δ
j
0)

j−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,j−1cµjlcνr〈GaiSaµ , Saν 〉

+
n−1
∑

j=0

α−(kl+1)n−jδ
j
0

n−1
∑

i=0

jl
∑

µ=0

r
∑

ν=0

ci,n−1cµjlcνr(Gaifa)(aν)Saµ(aν)

+

−(kl+2)n
∑

q=−∞

βq〈EqEl+n, Er〉

)]

= 0,

(5.7)
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then the product TϕTψ of two Toeplitz operators Tϕ and Tψ induces a Toeplitz

matrix of order n.

Thus the equation (5.7) is a necessary condition for the product of two
Toeplitz operators to be a Toeplitz operator and so by Proposition 3.4 we
obtain the following result.

Corollary 5.3. Let n be a positive integer. Suppose that Ω is a bounded n-

connected domain with C∞ smooth boundary. Let ϕ =
∑

∞

p=−∞
αpEp and

ψ =
∑

∞

q=−∞
βqEq be symbols in L∞(bΩ). If the product TϕTψ of two Toeplitz

operators Tϕ and Tψ on the Hardy space H2(bΩ) satisfies Cond(C) and (5.7),
then it is a Toeplitz operator.

In the case of simply connected domain Ω, either the former symbol ψ must
be a function in the Hardy space H2(bΩ) or some constant times the latter
symbol ϕ plus the Szegő kernel Sa must be an element of the orthogonal com-
plement H2(bΩ)⊥ provided the product TϕTψ of two Toeplitz operators Tϕ and
Tψ is a Toeplitz operator with some condition as follows.

Corollary 5.4. Suppose that Ω is a simply connected bounded domain with C∞

smooth boundary and suppose that the product TϕTψ of Toeplitz operators Tϕ
and Tψ is a Toeplitz operator with ϕ =

∑

∞

p=−∞
αpEp and ψ =

∑

∞

q=−∞
βqEq ∈

L∞(bΩ). If, for all nonnegative integers m and l,

(5.8)

−1
∑

p=−∞

αm+1+p〈EpE0, E0〉 =

−1
∑

q=−∞

β−l−1+q〈EqE0, E0〉 = 0,

then either

ϕ =
0
∑

p=−∞

αpEp (which is in H2(bΩ)⊥)

or

ψ =

∞
∑

q=0

βqEq (which is in H2(bΩ)).

In particular, in this case either ϕ − α0c00Sa is in the orthogonal complement

H2(bΩ)⊥ or ψ is holomorphic in H2(bΩ).

Remark 5.5. When Ω is the unit disc and the base point a is the origin a = 0 in
the plane, this result is exactly the same as the one of Brown and Halmos [4].

In fact, for this case, S0 = 1
2π , G0 = 1

2πz , f0 = z, c00 =
√
2π, Ep =

1
√

2π
zp, p ∈ Z

and thus it is easy to see that for all p ≤ −1, 〈EpE0, E0〉 = 0 and hence the
equation (5.8) trivially holds. Notice in particular that in this case, either the
symbol ϕ becomes a co-analytic and the symbol ψ is analytic.
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Proof of Corollary 5.4. When Ω is simply connected, for m = km, l = kl, the
equation (5.7) becomes

(

αm+1c
3
00Sa(a)

2 +

m
∑

p=−∞

αp〈EpE0, Em+1〉

)

·

(

α−l−1c
3
00Sa(a)

2 +
−l−2
∑

q=−∞

βq〈EqEl+1, E0〉

)

= 0.

Thus by using 〈EpE0, Em+1〉=〈Ep−m−1E0, E0〉 and 〈EqEl+1, E0〉=〈Eq+l+1E0,
E0〉 and letting p̃ = p−m− 1 and q̃ = q + l + 1, we obtain

(

αm+1c
3
00Sa(a)

2 +

−1
∑

p̃=−∞

αp̃+m+1〈Ep̃E0, E0〉

)

·

(

α−l−1c
3
00Sa(a)

2 +

−1
∑

q̃=−∞

βq̃−l−1〈Eq̃E0, E0〉

)

= 0.

Hence if the equation (5.8) holds,

αm+1c
3
00Sa(a)

2α−l−1c
3
00Sa(a)

2 = 0,

so for all m, l ≥ 0, αm+1α−l−1 = 0 and hence αp = 0 for p ≥ 1 and βq = 0 for
q ≤ −1, which proves the Corollary 5.4. �
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