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COMPUTATION OF THE MATRIX OF THE TOEPLITZ

OPERATOR ON THE HARDY SPACE

Young-Bok Chung

Abstract. The matrix representation of the Toeplitz operator on the

Hardy space with respect to a generalized orthonormal basis for the space
of square integrable functions associated to a bounded simply connected

region in the complex plane is completely computed in terms of only the
Szegő kernel and the Garabedian kernels.

1. Introduction

Some progresses for Toeplitz operators on the Hardy spaces associated to
general bounded regions have been recently made by virtue of the author (see
[4–6]). The author constructed an orthonormal basis for the space of square
integrable functions on bounded domains in the complex plane for which the
Laurent operators and the Toeplitz operators were classified in terms of their
corresponding matrices. Moreover he computed in an abstract form the matri-
ces of the Laurent operators and the Toeplitz operators relative to the Fourier
series expansion of the symbol involving the inner products of functions in the
basis. As the special case of the unit disc, an orthonormal basis has been gen-
eralized with only rational functions and by using this basis, several algebraic
properties such as computing problems of the Toeplitz operators on the Hardy
space have been proved in this general setting.

On the other hand, the matrix of the Toeplitz operator is very hard to
compute in general even in simply connected regions. So I would like to find
a compact form of the matrix of the operator having no such inner products
of elements of functions in the orthonormal basis. More specifically I want to
write the matrix in terms of functions which consist of only the Szegő kernels
and analytic parts of the Garabedian kernels.

In Section 2, we give several notations to be used in this paper and introduce
previous results and history. And we in Section 3 work on the main results
expressing the matrix of the Toeplitz operator.
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2. Preliminaries and notes

Throughout the paper, we assume that Ω is a simply connected bounded
region with C∞ smooth boundary and the base point a in Ω is fixed unless
otherwise specified.

Let L2(bΩ) be the space of square integrable functions on the boundary
bΩ and let H2(bΩ) be the classical Hardy space which consist of holomorphic
functions on Ω with boundary values in L2(bΩ). Then there exists a well-
known orthogonal projection of L2(bΩ) onto H2(bΩ) which is called the Szegő
projection denoted by P .

The Toeplitz operator Tϕ with symbol ϕ belong to the space L∞(bΩ) of the
essentially bounded Lebesgue-measurable functions is the bounded operator on
the Hardy space H2(bΩ) defined by

Tϕ(h) = P (ϕh), h ∈ H2(bΩ),

namely, the composite operator of the Szegő projection with the Laurent op-
erator restricted to the Hardy space. What is then the matrix representation
of the Toeplitz operator with respect to an orthonormal basis on H2(bΩ)?

Suppose that U is the unit disc. It is very easy to see that the class L0(bU)
of monomials and their reciprocals 1√

2π
zp for p ∈ Z is an orthonormal basis for

L2(bΩ) with respect to the inner product

〈u, v〉 =

∫
bU

uv ds,

where ds is the differential element of arc length on the boundary bU of U
and in particular, the monomials 1√

2π
zp with nonnegative integers p form an

orthonormal basis for the Hardy space H2(bΩ) which is denoted by H0(bU).
Moreover for the Fourier series representation ϕ =

∑∞
p=−∞ αp

1√
2π
zp of ϕ, the

(m, l)-th entry of the matrixM0(bU) of the Toeplitz operator Tϕ with respect
to the basis H0(bU) is given by

M0(bU)ml = αm−l, m, l ≥ 0

which becomes a Toeplitz matrix of order 1 in the sense that each entry is the
same as the one with indices increased by one step row-wise and column-wise.

As a generalization of this result, the author proved in [6] that given any
point a ∈ U , the class

La(bU) :=

{√
1− |a|2

2π

(z − a)p

(1− az)p+1
| p ∈ Z

}
of rational functions and the subclass

Ha(bU) :=

{√
1− |a|2

2π

(z − a)p

(1− az)p+1
| p ≥ 0

}



COMPUTATION OF THE MATRIX OF THE TOEPLITZ OPERATOR 1137

are orthonormal bases for L2(bU) and H2(bU), respectively. Furthermore I
showed that the matrix Ma(bU) of the operator Tϕ with respect to Ha(bU)
satisfies the identity

Ma(bU)ml =
1√

2π(1− |a|2)
αm−l +

a√
2π(1− |a|2)

αm−l−1

which implies

Ma(bU) =
1√

2π(1− |a|2)
M0(bU) +

a√
2π(1− |a|2)

M0(bU)L,

where L is the one-way infinite lower shift matrix given by

L =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...

 .
Now we want to generalize the case of the unit disc to more general simply

connected regions as mentioned early. Suppose that Ω is a simply connected
bounded region with C∞ smooth boundary and let S(z, w) be the reproducing
kernel for P which is called the Szegő kernel. And suppose that T is the unit
tangent vector function on the boundary bΩ with positive orientation. Then
the function

Ca(z) :=

(
1

2πi

T (z)

z − a

)
is the Cauchy kernel which reproduces holomorphic functions on Ω in C∞(Ω)
by means of the Cauchy integral formula. The function

G(z, a) :=
1

2π(z − a)
+ P (iCaT )(z)

is called the Garabedian kernel which is a reproducing kernel for the orthogonal
complement P⊥ in some sense. An important relation between the Szegő kernel
and the Garabedian kernel which is often used in the paper as a key element
is given by

(2.1) G(z, a) = i S(z, a) T (z), (z, a) ∈ bΩ× Ω

(see [2] for details). Finally the quotient of two kernels above

fa(z) :=
S(z, a)

G(z, a)

is called the Riemann mapping function associated to a which is a conformal
mapping of Ω onto U , satisfying the extremal problem

f ′a(a) = max{h : Ω→ U | h is holomorphic in Ω, h(a) = 0, h′(a) ∈ R}.
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3. Main results

In this section, we compute the matrix representation of the Toeplitz opera-
tor on the Hardy space associated to the given simply connected region Ω with
respect to an orthonormal basis of the Hardy space and the given symbol. For
simplicity, we use the shorthand notations Sa = S(·, a) and Ga = G(·, a) as
functions of the first variables.

First we need the following proposition proved by the author [4].

Proposition 3.1. Let Ω be a simply connected bounded region with C∞ smooth
boundary and let a be fixed in Ω. Then the class

La(bΩ) := {Ek | k ≥ 0} ∪ {E−k | k ≥ 1}
is an orthonormal basis for L2(bΩ) and the subclass Ha(bΩ) := {Ek | k ≥ 0}
is an orthonormal basis for H2(bΩ), where Ek = σSafa

k
for k ≥ 0, E−k =

σGafa
−k+1

for k ≥ 1, σ = 1/
√
S(a, a).

In order to compute entries of the matrix of the Toeplitz operator Tϕ, we
have to work on the inner product of the form 〈EkEm, El〉 for arbitrary integer
k and nonnegative integers m and l.

Lemma 3.2. Let k be a positive integer. Then

〈EkE0, E0〉 = 0.

Proof. Note that for a holomorphic function h ∈ H2(bΩ),

h(a) = 〈h, Sa〉.
It is then obvious because

〈EkE0, E0〉 = σ3〈Safa
k
Sa, Sa〉 = σ3Sa(a)

2
fa(a)

k
= 0. �

Lemma 3.3.
〈E0E0, E0〉 = σ3Sa(a)2.

Proof. It is also obvious because

〈E0E0, E0〉 = σ3〈Sa
2
, Sa〉 = σ3Sa(a)

2
. �

Observe that the Garabedian kernel Ga is a meromorphic function on Ω with

a simple single pole at a with residue 1/(2π). Hence the function G̃a defined
by

(3.1) G̃a(z) := G(z, a)− 1

2π(z − a)

is the analytic part of the kernel G(z, a) at z = a.

Lemma 3.4.

(3.2) 〈E−1E0, E0〉 =
σ3

2π
S′a(a) + 2σ3Sa(a)G̃a(a).
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Proof.

〈E−1E0, E0〉 = σ3〈GaSa, Sa〉 = σ3

∫
bΩ

GaSaSa ds.

It is then from the identities (2.1) and ds = Tdz that the identity above equals

(3.3) − i σ3

∫
bΩ

Ga
2
Sa dz.

It is easy to see from (3.1) that the residue of the integrand Ga
2
Sa at a is equal

to
1

4π2
Sa
′
(a) +

1

π
Sa(a)G̃a(a)

and it hence follows from the Residue theorem that the above identity (3.3) is
the same as the one (3.2) which proves Lemma 3.4. �

Lemma 3.5.

〈E−2E0, E0〉 = 3σ3 G̃a
2
(a) +

3

2π
σ3G̃a

′

(a).(3.4)

Proof. The proof is very similar to the one of the previous lemma. In fact, it
follows from the formula fa = Sa/Ga that

(3.5) 〈E−2E0, E0〉 = σ3〈Gafa
−1
Sa, Sa〉 = −i σ3

∫
bΩ

Ga
3
dz.

Note from (3.1) that the residue of Ga
3

at a is equal to

3

4π2
G̃a
′
(a) +

3

2π
G̃a(a)

2
.

Thus by the Residue theorem we can rewrite the above identity (3.5) as the
one (3.4) in Lemma 3.5. �

Now we work on general k’s with k ≥ 3. We first introduce the higher order
derivative rule of the reciprocal which is well-known.

Lemma 3.6 ([7]). Let n be a nonnegative integer and let h be a holomorphic
function at a point z with h(z) 6= 0. Then the nth derivative of the reciprocal
1/h at z is given by(

1

h

)(n)

(z) =

n∑
k=0

(−1)k
(
n+ 1

k + 1

)
1

h(z)k+1

(
hk
)(n)

(z).

Using Lemma 3.6 and the Leibnitz rule, we can obtain the rule of the higher
order derivative for the quotient of two holomorphic functions as follows.

Lemma 3.7. Let n be a nonnegative integer and let g, h be holomorphic func-
tions at a point z with h(z) 6= 0. Then the n-th derivative of the quotient g/h
at z is given by( g

h

)(n)

(z) =

n∑
k=0

(
n

k

)
g(k)(z)

n−k∑
r=0

(−1)r
(
n− k + 1

r + 1

)
1

h(z)r+1
(hr)

(n−k)
(z).
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Going back to our work, we compute the inner product of the triple (Ek, E0,
E0) for k ≥ 3. Similarly as in the previous lemmas, we get the identities

〈E−kE0, E0〉 = σ3〈Gafa
−k+1

Sa, Sa〉

= σ3

∫
bΩ

Ga
Ga

k−1

Sa
k−1

SaSa ds

= σ3

∫
bΩ

Ga
k

Sa
k−2

(−iGaT )T dz

= −i σ3

∫
bΩ

Ga
k+1

Sa
k−2

dz

= 2πσ3 Res

(
Ga

k+1

Sa
k−2

; a

)
.

Note from the binomial formula that

Ga
k+1

Sa
k−2

=

k+1∑
j=0

(
k + 1

j

)(
1

2π(z − a)

)k+1−j G̃a
j

Sa
k−2

.

It turns out from the definition of residue that

(3.6) Res

(
Ga

k+1

Sa
k−2

; a

)
=

k∑
j=0

(
k + 1

j

)
1

(k − j)!
1

(2π)k+1−j

(
G̃a

j

Sa
k−2

)(k−j)

(a).

Notice that the index k+ 1 for j in the summation is removed because Sa does
not have a zero at a.

Hence we have proved the following formula from Lemma 3.7.

Lemma 3.8. Let k be an integer with k ≥ 3. Then

〈E−kE0, E0〉

= σ3
k∑
j=0

(
k + 1

j

)
1

(k − j)!
1

(2π)k−j

k−j∑
r=0

(
k − j
r

)(
G̃a

j
)(r)

(a)

·
k−j−r∑
l=0

(−1)l
(
k − j − r + 1

l + 1

)
1

Sa(a)
(k−2)(l+1)

(
Sa

l(k−2)
)(k−j−r)

(a).

We are now ready to compute the matrix of the Toeplitz operator. Let

ϕ =

∞∑
p=−∞

αpEp

be the Fourier series representation with respect to the orthonormal basis
La(bΩ) in L∞(bΩ). It is proved that the matrix representation Ma(bΩ) of
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the operator Tϕ with respect to the basis Ha(bΩ) is a Toeplitz matrix of order
1 (see [4]). In fact, for m, l ≥ 0, it follows from analyticity of Ep for p ≥ 0 that

〈Tϕ(Em+1), El+1〉 = 〈P (ϕEm+1), El+1〉
= 〈ϕEm+1, El+1〉

= σ2〈ϕSafa
m+1

, Safa
l+1〉

which from the identity |fa(z)|= 1 for z ∈ bΩ yields

σ2〈ϕSafa
m
, Safa

l〉,

which is reversely exactly the same as

〈Tϕ(Em), El〉.

It then follows that for m ≥ l ≥ 0,

(3.7) Ma(bΩ)ml =Ma(bΩ)m−l,0 =

∞∑
p=−∞

αp〈EpE0, Em−l〉.

On the other hand, as in the above remark, one can show that for any integers
pi, qi, ri, i = 1, 2,

〈Ep1Eq1 , Er1〉 = 〈Ep2Eq2 , Er2〉
provided p1 + q1 − r1 = p2 + q2 − r2. (See Theorem 4.3 of [5] for more general
results.) Thus the identity (3.7) is equal to

∞∑
p=−∞

αp〈Ep−m+lE0, E0〉,

which from Lemma 3.2 is identical to the negative one-way summation

(3.8)

m−l∑
p=−∞

αp〈Ep−m+lE0, E0〉.

Finally by applying explicit formulas obtained by Lemmas 3.3, 3.4, 3.5 and
Lemma 3.8 to the above identity (3.8), we have the following main result.

Theorem 3.9. Suppose that Ω is a bounded simply connected region with C∞

smooth boundary. Let a be fixed in Ω and let ϕ =
∑∞
p=−∞ αpEp be the Fourier

series representation with respect to the orthonormal basis La(bΩ) in L∞(bΩ).
For nonnegative integers m, l, the m-th and l-th entry of the matrix Ma(bΩ)
of the Toeplitz operator Tϕ on the Hardy space H2(bΩ) with respect to the
orthonormal basis Ha(bΩ) is given by

1

σ3
Ma(bΩ)ml = αm−lSa(a)2 + αm−l−1

(
1

2π
S′a(a) + 2Sa(a)G̃a(a)

)
+ αm−l−2

(
3G̃a

2
(a) +

3

2π
G̃a
′

(a)

)
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+

m−l−3∑
p=−∞

αp

[
m−l−p∑
j=0

(
m− l − p+ 1

j

)
1

(m− l − p− j)!
1

(2π)m−l−p−j

·
m−l−p−j∑

r=0

(
m− l − p− j

r

)(
G̃a

j
)(r)

(a)

·
m−l−p−j−r∑

l=0

(−1)l
(
m− l − p− j − r + 1

l + 1

)
1

Sa(a)
(m−l−p−2)(l+1)

·
(
Sa

l(m−l−p−2)
)(m−l−p−j−r)

(a)

]
.

Remark 3.10. As a final remark, we show that the induced matrix by the
Toeplitz operator can be expressed in terms of the Bell polynomials.

Suppose that n and k be nonnegative integers with n ≥ k and let f1, f2, . . . ,
fn−k+1 be indeterminates. The partial exponential Bell polynomial Bn,k (see
[1, 3] for reference) is a sum of polynomials of fj ’s defined by

Bn,k(f1, f2, . . . , fn−k+1)

=
∑

j1,j2,...,jn−k+1

n!

j1! j2! · · · jn−k+1!

(
f1

1!

)j1 (f2

2!

)j2
· · ·
(

fn−k+1

(n− k + 1)!

)jn−k+1

,

where the sum is taken over all ji ≥ 0 satisfying j1 + · · · + jn−k+1 = k, j1 +
2j2 + 3j3 + · · · + (n − k + 1)jn−k+1 = n. It is known that the corresponding
formula to the identity in Lemma 3.7 of higher order derivatives of fractions is
given by( g

h

)(n)

(z) =

n∑
k=0

(
n

k

)
g(n−k)(z)

k∑
r=0

(−1)r
r!

h(z)r+1

· Bk,r
(
h(z)(1), h(z)(2), . . . , h(z)(k−r+1)

)
.

Similarly as in the Lemma 3.8 and thereafter, we can thus obtain the fol-
lowing result.

Theorem 3.11. Suppose that Ω is a bounded simply connected region with C∞

smooth boundary. Let a be fixed in Ω and let ϕ =
∑∞
p=−∞ αpEp be the Fourier

series representation with respect to the orthonormal basis La(bΩ) in L∞(bΩ).
For nonnegative integers m, l, the m-th and l-th entry of the matrix Ma(bΩ)
of the Toeplitz operator Tϕ on the Hardy space H2(bΩ) with respect to the
orthonormal basis Ha(Ω) is given by

1

σ3
Ma(bΩ)ml = αm−lSa(a)2 + αm−l−1

(
1

2π
S′a(a) + 2Sa(a)G̃a(a)

)
+ αm−l−2

(
3G̃a

2
(a) +

3

2π
G̃a
′

(a)

)
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+

m−l−3∑
p=−∞

αp

[
m−l−p∑
j=0

(
m− l − p+ 1

j

)
1

(m− l − p− j)!
1

(2π)m−l−p−j

·
m−l−p−j∑

r=0

(
m− l − p− j

r

)(
G̃a

j
)(m−l−p−j−r)

(a)

·
r∑
t=0

(−1)t
t!

Sa(a)
(m−l−p−2)(t+1)

· Br,t
((

Sa
m−l−p−2

)(1)

(a),
(
Sa

m−l−p−2
)(2)

(a), . . . ,

(
Sa

m−l−p−2
)(r−t+1)

(a)

)]
.
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