• Title/Summary/Keyword: Threshold current

Search Result 1,068, Processing Time 0.034 seconds

Current-Mode Circuit Design using Sub-threshold MOSFET (Sub-threshold MOSFET을 이용한 전류모드 회로 설계)

  • Cho, Seung-Il;Yeo, Sung-Dae;Lee, Kyung-Ryang;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.10-14
    • /
    • 2013
  • In this paper, when applying current-mode circuit design technique showing constant power dissipation none the less operation frequency, to the low power design of dynamic voltage frequency scaling, we introduce the low power current-mode circuit design technique applying MOSFET in sub-threshold region, in order to solve the problem that has large power dissipation especially on the condition of low operating frequency. BSIM 3, was used as a MOSFET model in circuit simulation. From the simulation result, the power dissipation of the current memory circuit with sub-threshold MOSFET showed $18.98{\mu}W$, which means the consumption reduction effect of 98%, compared with $900{\mu}W$ in that with strong inversion. It is confirmed that the proposed circuit design technique will be available in DVFS using a current-mode circuit design.

Theoretical Analysis of Second Harmonic Distortion for Threshold Current in DH Laser Diode (DH Laser Diode의 Threshold Current에 대한 2차 고조파 왜곡의 이론적 해석)

  • 김성일;박한규
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.2
    • /
    • pp.10-14
    • /
    • 1980
  • In this paper, the second harmonic distortion of the DH L.D. is analyzed using dynamic and static rate equations. In this analysis the modulation current Jm is changed by varang the iinjection current with the relation of where m stands for modulation index. It is showed that relative harmonic distortion ( ) has a peak exactly at the threshold current. It is also confirmed that this method is simople and more accurate than previously reported methods in the decision of the threshold current.

  • PDF

Influence of Tunneling Current on Threshold voltage Shift by Channel Length for Asymmetric Double Gate MOSFET (비대칭 DGMOSFET에서 터널링 전류가 채널길이에 따른 문턱전압이동에 미치는 영향)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1311-1316
    • /
    • 2016
  • This paper analyzes the influence of tunneling current on threshold voltage shift by channel length of short channel asymmetric double gate(DG) MOSFET. Tunneling current significantly increases by decrease of channel length in the region of 10 nm below, and the secondary effects such as threshold voltage shift occurs. Threshold voltage shift due to tunneling current is not negligible even in case of asymmetric DGMOSFET to develop for reduction of short channel effects. Off current consists of thermionic and tunneling current, and the ratio of tunneling current is increasing with reduction of channel length. The WKB(Wentzel-Kramers-Brillouin) approximation is used to obtain tunneling current, and potential distribution in channel is hermeneutically derived. As a result, threshold voltage shift due to tunneling current is greatly occurred for decreasing of channel length in short channel asymmetric DGMOSFET. Threshold voltage is changing according to bottom gate voltages, but threshold voltage shifts is nearly constant.

A study on the threshold current ratio method using the measurement of coated facet reflectivity of a laser diode (레이저 다이오드의 코팅된 단면의 반사율 측정에 사용되는 문턱전류비에 관한 연구)

  • Lee, Sang-Moo;Kim, Boo-Gyoun
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.541-543
    • /
    • 1995
  • We propose the improved threshold current ratio method to determine the reflectivity of coated facets. The carrier recombination time used in the improved threshold current ratio method depends on the value of facet reflectivities. However, the carrier recombination time used in the conventional threshold current ratio method is constant regardless of facet reflectivities. The difference between the results of the two methods increases as the reflectivity of a coated facet decreases.

  • PDF

Threshold Voltage Control through Layer Doping of Double Gate MOSFETs

  • Joseph, Saji;George, James T.;Mathew, Vincent
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.240-250
    • /
    • 2010
  • Double Gate MOSFETs (DG MOSFETs) with doping in one or two thin layers of an otherwise intrinsic channel are simulated to obtain the transport characteristics, threshold voltage and leakage current. Two different device structures- one with doping on two layers near the top and bottom oxide layers and another with doping on a single layer at the centre- are simulated and the variation of device parameters with a change in doping concentration and doping layer thickness is studied. It is observed that an n-doped layer in the channel reduces the threshold voltage and increases the drive current, when compared with a device of undoped channel. The reduction in the threshold voltage and increase in the drain current are found to increase with the thickness and the level of doping of the layer. The leakage current is larger than that of an undoped channel, but less than that of a uniformly doped channel. For a channel with p-doped layer, the threshold voltage increases with the level of doping and the thickness of the layer, accompanied with a reduction in drain current. The devices with doped middle layers and doped gate layers show almost identical behavior, apart from the slight difference in the drive current. The doping level and the thickness of the layers can be used as a tool to adjust the threshold voltage of the device indicating the possibility of easy fabrication of ICs having FETs of different threshold voltages, and the rest of the channel, being intrinsic having high mobility, serves to maintain high drive current in comparison with a fully doped channel.

Low Threshold Current Density and High Efficiency Surface-Emitting Lasers with a Periodic Gain Active Structure

  • Park, Hyo-Hoon;Yoo, Byueng-Su
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • We have achieved very low threshold current densities with high light output powers for InGaAs/ GaAs surface-emitting lasers using a periodic gain active structure in which three quantum wells are inserted in two-wavelength-thick (2${\lambda}$ ) cavity. Air-post type devices with a diameter of 20~40${\mu}m$ exhibit a threshold current density of 380~410$A/cm^2$. Output power for a 40${\mu}m$ diameter device reaches over 11 mW. A simple theoretical calculation of the threshold and power performances indicates that the periodic gain structure has an advantage in achieving low threshold current density mainly due to the high coupling efficiency between gain medium and optical field. The deterioration of power, expected from the long cavity length of $2{\lambda}$, is negligible.

  • PDF

Analysis of Dimension Dependent Threshold Voltage Roll-off for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 분석)

  • Jeong Hak-Gi;Lee Jae-Hyung;Joung Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.869-872
    • /
    • 2006
  • In this paper, the threshold voltage roll-off been analyzed for nano structure double gate FinFET. The analytical current model has been developed , including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics are used to calculate thermionic emission current, and WKB(Wentzel- framers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off Is very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects and this process has to be developed.

  • PDF

Analysis of Dimension-Dependent Threshold Voltage Roll-off and DIBL for Nano Structure Double Gate FinFET (나노구조 이중게이트 FinFET의 크기변화에 따른 문턱전압이동 및 DIBL 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.760-765
    • /
    • 2007
  • In this paper, the threshold voltage roll-off and drain induced barrier lowering(DIBL) have been analyzed for nano structure double gate FinFET. The analytical current model has been developed, including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics were used to calculate thermionic omission current, and WKB(Wentzel- Kramers-Brillouin) approximation to tunneling current. The threshold voltage roll-offs are obtained by simple adding two currents since two current is independent. The threshold voltage roll-off by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the threshold voltage roll-off and DIBL are very large. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects, and this process has to be developed.

Scaling theory to minimize the roll-off of threshold voltage for ultra fine MOSFET (미세 구조 MOSFET에서 문턱전압 변화를 최소화하기 위한 최적의 스켈링 이론)

  • 정학기;김재홍;고석웅
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.719-724
    • /
    • 2003
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model (QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll off characteristics for threshold voltage of MOSFET with decreasing channel length, we know $\alpha$ value must be nearly 1 in the generalized scaling.

Properties of p-n junction threshold voltage of Silicon diode by transport current in cryogenic temperature (인입 전류에 따른 실리콘(Silicon) 다이오드의 극저온 p-n 접합의 문턱 전압 특성)

  • Lee, An-Su;Lee, Seung-Je;Lee, Eung-Ro;Ko, Tea-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.864-867
    • /
    • 2003
  • Since the development of semiconductors, various related research has been conducted. During research, silicon diodes have been commonly used because of their simplicity and low cost in the manufacturing process. This research deals with p-n junction threshold voltages from silicon diodes due to transport current at a cryogenic temperature. At a cryogenic temperature(77K) we could get minimum current which junction threshold voltage becomes constant. This is experimented on GPIB communication and it consist of programmable current source, multimeter which gauge the threshold voltage in a very low temperature caused by transport current from 5nA to 1mA and $LN_2$(77K) for coolant. This experiment is programmed all process using Measurement studio(Lab window) tool.

  • PDF