• Title/Summary/Keyword: Thin film transistors

Search Result 867, Processing Time 0.027 seconds

Pentacene-based Thin Film Transistors with Improved Mobility Characteristics using Hybrid Gate Insulator

  • Park, Chang-Bum;Jung, Keum-Dong;Jin, Sung-Hun;Park, Byung-Gook;Lee, Jong-Duk
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.16-18
    • /
    • 2005
  • Hybrid insulator pentacene thin film transistors (TFTs) are fabricated with thermally grown oxide and cross-linked polyvinylalcohol (PVA) including surface treatment by dilute ploymethylmethacrylate (PMMA) layer on $n^+$ doped silicon wafer. Through the optimization of $SiO_2$ layer thickness in hybrid insulator structure, carrier mobility is increased to more than 35 times than that of the TFT which has only a gate insulator of $SiO_2$ at the same electric field. The carrier mobility of $1.80cm^2$/V-s, subthreshold swing of 1.81 V/decade, and $I_{on}/I_{off}$ current ratio> $1.10{\times}10^5$ are obtained less than -30 V bias condition. The result is one of the best reported performances of pentacene TFTs with hybrid insulator including cross-linked PVA layer as a gate insulator at relatively low voltage operation.

Annealing Effects of Gate-insulator on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (게이트절연막의 열처리가 Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 영향)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.365-370
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated on oxidized $n^+$ Si wafers. The thickness of ~30 nm $Al_2O_3$ films were deposited on the oxidized Si wafers by atomic layer deposition, which acted as the gate insulators of ZTO TTFTs. The $Al_2O_3$ films were rapid-annealed at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, and $1,000^{\circ}C$, respectively. Active layers of ZTO films were deposited on the $Al_2O_3/SiO_2$ coated $n^+$ Si wafers by rf magnetron sputtering. Mobility and threshold voltage were measured as a function of the rapid-annealing temperature. X-ray photoelectron spectroscopy (XPS) were carried out to observe the chemical bindings of $Al_2O_3$ films. The annealing effects of gate-insulator on the properties of TTFTs were analyzed based on the results of XPS.

Characteristics of Indium Tin Zinc Oxide Thin Film Transistors with Plastic Substrates (고분자 기판과 PECVD 절연막에 따른 ITZO 박막 트랜지스터의 특성 분석)

  • Yang, Dae-Gyu;Kim, Hyoung-Do;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.247-253
    • /
    • 2018
  • We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below $350^{\circ}C$. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and $H_2O$ increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., $Al_2O_3$) that can sufficiently prevent the diffusion of impurities into the channel.

Effect of Adhesion Layer on Gate Insulator (게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.357-361
    • /
    • 2006
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4,4'-oxydianiline. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2/Vs$, threshold voltage of -0.8 V and on-off current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

Threshold voltage shift of solution processed InGaZnO thin film transistors with indium composition ratio (용액 공정으로 제작된 InGaZnO TFT의 인듐 조성비에 따른 문턱전압 변화)

  • Park, Ki-Ho;Lee, Deuk-Hee;Lee, Dong-Yun;Ju, Byung-Kwon;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.3-3
    • /
    • 2010
  • We investigated the influence of the indium content on the threshold voltage ($V_{th}$) shift of sol-gel-derived indium-gallium-zinc oxide (IGZO) thin film transistors (TFTs). Surplus indium composition ratio into IGZO decreases the value of $V_{th}$ of IGZO TFTs showed huge $V_{th}$ shift in the negative direction. $V_{th}$ shift decreases from 10 to -28.2V as Indium composition ratio is increased. Because the free electron density is increased according to variation of the Indium composition ratio.

  • PDF

Control of the Gold Electrode Work Function for High Performance Organic Thin Film Transistors (표면개질된 금 전극의 일함수 조절을 통한 고성능 유기박막 트랜지스터 개발)

  • Park, Yeong Don
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-292
    • /
    • 2012
  • Au electrodes modified with self-assembled monolayers (SAMs) were used to control the work function of source/drain electrodes in triethylsilylethynyl anthradithiophene (TES ADT)-based organic thin film transistors (OTFTs). By using benzothiol (BT) and pentafluorobenzothiol (PFBT) SAMs, the hole injection barrier between Au and the highest occupied molecular orbital (HOMO) of TES ADT was controlled. After a solvent annealing, TES ADT OTFTs with PFBT SAM-treated Au electrodes were found to exhibit high field-effect mobilities of $0.05\;cm^2/Vs$ and on/off current ratios of $10^6$.

Characterization of Density-of-States in Polymer-based Organic Thin Film Transistors and Implementation into TCAD Simulator

  • Kim, Jaehyeong;Jang, Jaeman;Bae, Minkyung;Lee, Jaewook;Kim, Woojoon;Hur, Inseok;Jeong, Hyun Kwang;Kim, Dong Myong;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.43-47
    • /
    • 2013
  • In this work, we report extraction of the density-of-states (DOS) in polymer-based organic thin film transistors through the multi-frequency C-V spectroscopy. Extracted DOS is implemented into a TCAD simulator and obtained a consistent output curves with non-linear characteristics considering the contact resistance effect. We employed a Schottky contact model for the source and drain to fully reproduce a strong nonlinearity with proper physical mechanisms in the output characteristics even under a very small drain biases. For experimental verification of the model and extracted DOS, 2 different OTFTs (P3HT and PQT-12) are employed. By controlling the Schottky contact model parameters in the TCAD simulator, we accurately reproduced the nonlinearity in the output characteristics of OTFT.

Effects of Gate Insulators on the Operation of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 동작에 미치는 게이트 절연층의 영향)

  • Cheon, Young Deok;Park, Ki Cheol;Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Transparent thin film transistors (TTFT) were fabricated on $N^+$ Si wafers. $SiO_2$, $Si_3N_4/SiO_2$ and $Al_2O_3/SiO_2$ grown on the wafers were used as gate insulators. The rf magnetron sputtered zinc tin oxide (ZTO) films were adopted as active layers. $N^+$ Si wafers were wet-oxidized to grow $SiO_2$. $Si_3N_4$ and $Al_2O_3$ films were deposited on the $SiO_2$ by plasma enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD), respectively. The mobility, $I_{on}/I_{off}$ and subthreshold swing (SS) were obtained from the transfer characteristics of TTFTs. The properties of gate insulators were analyzed by comparing the characteristics of TTFTs. The property variation of the ZTO TTFTs with time were observed.

The Effect of Adhesion layer on Gate Insulator for OTFTs (OTFT의 게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Jung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.70-71
    • /
    • 2005
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 6FDA and ODA. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2$/Vs, threshold voltage of -0.8 V and on-of current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

  • PDF

Effective Positive Bias Recovery for Negative Bias Stressed sol-gel IGZO Thin-film Transistors (음 바이어스 스트레스를 받은 졸-겔 IGZO 박막 트랜지스터를 위한 효과적 양 바이어스 회복)

  • Kim, Do-Kyung;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.329-333
    • /
    • 2019
  • Solution-processed oxide thin-film transistors (TFTs) have garnered great attention, owing to their many advantages, such as low-cost, large area available for fabrication, mechanical flexibility, and optical transparency. Negative bias stress (NBS)-induced instability of sol-gel IGZO TFTs is one of the biggest concerns arising in practical applications. Thus, understanding the bias stress effect on the electrical properties of sol-gel IGZO TFTs and proposing an effective recovery method for negative bias stressed TFTs is required. In this study, we investigated the variation of transfer characteristics and the corresponding electrical parameters of sol-gel IGZO TFTs caused by NBS and positive bias recovery (PBR). Furthermore, we proposed an effective PBR method for the recovery of negative bias stressed sol-gel IGZO TFTs. The threshold voltage and field-effect mobility were affected by NBS and PBR, while current on/off ratio and sub-threshold swing were not significantly affected. The transfer characteristic of negative bias stressed IGZO TFTs increased in the positive direction after applying PBR with a negative drain voltage, compared to PBR with a positive drain voltage or a drain voltage of 0 V. These results are expected to contribute to the reduction of recovery time of negative bias stressed sol-gel IGZO TFTs.