Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.4.247

Characteristics of Indium Tin Zinc Oxide Thin Film Transistors with Plastic Substrates  

Yang, Dae-Gyu (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyoung-Do (Department of Materials Science and Engineering, Chungnam National University)
Kim, Jong-Heon (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.28, no.4, 2018 , pp. 247-253 More about this Journal
Abstract
We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below $350^{\circ}C$. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and $H_2O$ increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., $Al_2O_3$) that can sufficiently prevent the diffusion of impurities into the channel.
Keywords
thin film transistors(TFTs); indium tin zinc oxide(ITZO); polyimide(PI); flexible;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004).   DOI
2 H. Hosono, J. Non-Cryst. Solids., 352, 851 (2006).   DOI
3 J. Seo, K.-Y. Cho, and H. Han, Polym. Degrad. Stab., 74, 133 (2001).   DOI
4 H. Gleskova and S. Wanger, IEEE Electron Device Lett., 20, 473 (1999).   DOI
5 Y. R. Denny, K. Lee, S. Seo, S. K. Oh, H. J. Kang, D. S. Yang, S. Heo, J. G. Chung, and J. C. Lee, Appl. Surf. Sci., 315, 454 (2014).   DOI
6 T. Sziirhyi, L. D. Laude, I. Bertoti, Z. S. Geretovszky, and Z. Kantor, Apply. Surf. Sci., 96, 363 (1996).
7 J. Lee, J.-S, Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, and Y.-G. Mo, Appl. Phys. Lett., 95, 123502 (2009).   DOI
8 A. Heya and N. Matsuo, Thin Solid Films, 625, 93 (2017).   DOI
9 D. G. Yang, H. D. Kim, J. H. Kim, S. W. Lee, J. P, Y. J. Kim, and H.-S. Kim, Thin Solid Films, 638, 361 (2017).   DOI
10 K.-C. Ok, S.-H. K. Park, C.-S. Hwang, H. Kim, H. S. Shin, J. B, and J.-S. Park, Appl. Phys. Lett., 104, 063508 (2014).   DOI
11 B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, Appl. Phys. Lett., 97, 2108 (2010).
12 Y.-H. Chang, M.-J. Yu, R.-P. Lin, C.-P. Hsu, and T.-H. Hou, Apply. Phys. Lett., 108, 033502 (2016).   DOI