Browse > Article

Pentacene-based Thin Film Transistors with Improved Mobility Characteristics using Hybrid Gate Insulator  

Park, Chang-Bum (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University)
Jung, Keum-Dong (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University)
Jin, Sung-Hun (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University)
Park, Byung-Gook (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University)
Lee, Jong-Duk (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University)
Publication Information
Abstract
Hybrid insulator pentacene thin film transistors (TFTs) are fabricated with thermally grown oxide and cross-linked polyvinylalcohol (PVA) including surface treatment by dilute ploymethylmethacrylate (PMMA) layer on $n^+$ doped silicon wafer. Through the optimization of $SiO_2$ layer thickness in hybrid insulator structure, carrier mobility is increased to more than 35 times than that of the TFT which has only a gate insulator of $SiO_2$ at the same electric field. The carrier mobility of $1.80cm^2$/V-s, subthreshold swing of 1.81 V/decade, and $I_{on}/I_{off}$ current ratio> $1.10{\times}10^5$ are obtained less than -30 V bias condition. The result is one of the best reported performances of pentacene TFTs with hybrid insulator including cross-linked PVA layer as a gate insulator at relatively low voltage operation.
Keywords
pentacene; organic thin film transistors (TFTs); hybrid gate insulator; PMMA; PVA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett., 18, 606 (1997)   DOI   ScienceOn
2 Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguch, and T. Sakurai, Appl. Phys. Lett., 84, 3789 (2004)   DOI   ScienceOn
3 P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett., 82, 3964 (2003)
4 H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, J. Appl. Phys., 92, 5259 (2002)
5 S. H. Jin, J. S. Yu, C. A. Lee, J. W. Kim, B. G. Park, and J. D. Lee, J. Korean Phys. Soc. 44, 181 (2004)
6 Z. T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, Appl. Phys. Lett., 81, 4643 (2002)
7 M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, H. Klauk, and T. N. Jackson, IEEE Electron Device Lett., 21, 534 (2000)
8 C. D. Dimitrakopoulos, S. Purushothaman, J. Kyrnissis, and A. Callegari, J. M. Shaw, Science, 283, 822 (1999)
9 G. wang, Y. Luo, and P. H. Beton, Appl. Phys. Lett., 83, 3108 (2003)   DOI   ScienceOn
10 X. Peng, G. Horowitz, D. Fichou, and F. Garnier, Appl. Phys. Lett., 57, 2013 (1990)