Pentacene-based Thin Film Transistors with Improved Mobility Characteristics using Hybrid Gate Insulator

  • Park, Chang-Bum (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University) ;
  • Jung, Keum-Dong (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University) ;
  • Jin, Sung-Hun (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University) ;
  • Park, Byung-Gook (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University) ;
  • Lee, Jong-Duk (Inter-University Semiconductor Research Center and School of Electrical Engineering, Seoul Natinal University)
  • Published : 2005.06.24

Abstract

Hybrid insulator pentacene thin film transistors (TFTs) are fabricated with thermally grown oxide and cross-linked polyvinylalcohol (PVA) including surface treatment by dilute ploymethylmethacrylate (PMMA) layer on $n^+$ doped silicon wafer. Through the optimization of $SiO_2$ layer thickness in hybrid insulator structure, carrier mobility is increased to more than 35 times than that of the TFT which has only a gate insulator of $SiO_2$ at the same electric field. The carrier mobility of $1.80cm^2$/V-s, subthreshold swing of 1.81 V/decade, and $I_{on}/I_{off}$ current ratio> $1.10{\times}10^5$ are obtained less than -30 V bias condition. The result is one of the best reported performances of pentacene TFTs with hybrid insulator including cross-linked PVA layer as a gate insulator at relatively low voltage operation.

Keywords

References

  1. Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett., 18, 606 (1997) https://doi.org/10.1109/55.644085
  2. Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguch, and T. Sakurai, Appl. Phys. Lett., 84, 3789 (2004) https://doi.org/10.1063/1.1637949
  3. M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, H. Klauk, and T. N. Jackson, IEEE Electron Device Lett., 21, 534 (2000)
  4. P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett., 82, 3964 (2003)
  5. Z. T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, Appl. Phys. Lett., 81, 4643 (2002)
  6. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, J. Appl. Phys., 92, 5259 (2002)
  7. X. Peng, G. Horowitz, D. Fichou, and F. Garnier, Appl. Phys. Lett., 57, 2013 (1990)
  8. S. H. Jin, J. S. Yu, C. A. Lee, J. W. Kim, B. G. Park, and J. D. Lee, J. Korean Phys. Soc. 44, 181 (2004)
  9. G. wang, Y. Luo, and P. H. Beton, Appl. Phys. Lett., 83, 3108 (2003) https://doi.org/10.1063/1.1590422
  10. C. D. Dimitrakopoulos, S. Purushothaman, J. Kyrnissis, and A. Callegari, J. M. Shaw, Science, 283, 822 (1999)