• Title/Summary/Keyword: The National Standards Gifted Education Program

Search Result 8, Processing Time 0.023 seconds

A Study on Teachers' Perceptions of the National Standards Gifted Education Program (국가표준 영재교육 프로그램 기준 개발에 대한 영재교사들의 인식)

  • Kim, Young Ock;Maeng, Hee Ju
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.6
    • /
    • pp.799-815
    • /
    • 2015
  • The gifted Education has been grown up a lot although it has several problems in terms of the quality of the gifted education programs after legislated the Promotion of Education for the Gifted and Talented Law during the last ten-year period. So the purpose of this study was to investigate teachers' perceptions of the national standards gifted education program and the problems in managing of the gifted education program. The conclusions according to the analysis are as follows. First, it has analyzed that gifted teachers recognize the lack of teaching and learning materials, regional level difference of the gifted children, Redundancy of program in the grade and school levels in managing of the gifted education as the problems. Second, it was found that perception of most gifted teachers about necessity of the National Standards Gifted Education Program development was very positive. Also, it has shown that gifted teachers expect the education with the overlapped contents and teaching methods would be managed differently, the difficulty of the topic selection could be resolved, and the quality of the gifted education by the programs development of various aspects would be increased. Especially, gifted teachers expect that the problem from the lack of gifted education continuity of school levels could be resolved by development of the National Standards Gifted Education Program. Therefore, for the improving quality of gifted education with resolving the problem from the Contents Redundancy and the lack of gifted education continuity of school levels, the national standards gifted education program should be studied developed as soon as possible.

Development of Convergence Education Program for Elementary School Gifted Education Based on Mathematics and Science (초등학교 영재교육을 위한 수학·과학 중심의 융합교육 프로그램 개발)

  • Ryu, Sung-Rim;Lee, Jong-Hak;Yoon, Ma-Byong;Kim, Hak-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.217-228
    • /
    • 2018
  • The purpose of this study is to develop STEAM program for gifted education by combining educational contents of humanities, arts, engineering, technology, and design into various subjects, focusing on mathematics-science curriculum of elementary school. The achievement standards and curriculum contents of elementary mathematics-science curriculum were analyzed while considering 2015 revised national curriculum. And then, a 16 class-hour convergence education program consisting of 3-hour block time was developed by applying the STEAM model with 4 steps. The validity of the program developed through this process was verified, and four educational experts evaluate whether the program can be applied to the elementary school. Based on the evaluation results, the convergence education program was finalized. As a result of implementing the gifted education program for mathematics-science, students achieved the objectives and values of convergence education such as creative design, self-directed participation, cooperative learning, and interest in class activities (game, making). If this convergence education program is applied to regular class, creative experiential class, or class for gifted children, students can promote their scientific creativity, artistic sensitivity, design sence, and so on.

An International Comparative Study of the Graduate Degree Programs for the Professionals of the Gifted/Talented Education - An Analysis of Korean Graduate Program in Comparison with the Standards of America and Europe - (영재교육 전문가 양성을 위한 대학원 교육과정 국제 비교 연구 - 미국과 유럽 표준에 비추어본 한국 대학원 교육과정의 교과목 분석 -)

  • Kang, Choong-Youl
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.3
    • /
    • pp.569-589
    • /
    • 2008
  • One of the main factors that affect the improvement of G/T education is the number and the level of quality of the professionals who are working for the gifted. The professionals vary depending on the role they play for the gifted from the classroom teacher, coordinator, to consultant. Since the legislation of the law for the enhancement of the gifted education in Korea, the in-service training for the classroom teacher has been expanded in number throughout the country. Nowadays, the gifted education is about to be expanded into the general school population, and it becomes more necessary that the training at the level of university graduate program be expanded beyond the short-term in-service training so far. In this vein, the number of universities in Korea that offer the staff development for the gifted education at the graduate level has been increased. However, the problem is whether those programs meet the need to produce the quality professionals. Based on this problem awareness, the study analyzed the graduate programs of 8 universities in Korea by comparing their course descriptions with the graduate-level training program standards of the United States and Europe. It was found that most of the universities fulfilled the areas that both standards commonly consider import, such as "concept and development of giftedness", "curriculum development for the gifted", "teaching methods for the gifted." However, the number of the offered subjects was different among the universities, which indicates that it is suspicious that the universities equally satisfy the areas both standards require. Furthermore, it was also found that the universities differ in satisfying the other standards, From these findings, several suggestions were made for the improvement of the university graduate programs in Korea.

Development of Distance Education Programs Utilizing Diffy Game for the Math Gifted Students in Elementary School (디피(Diffy) 게임을 활용한 원격교육용 초등수학영재 프로그램 개발)

  • Lee, Youn Young;Song, Sang Hun
    • School Mathematics
    • /
    • v.15 no.1
    • /
    • pp.121-136
    • /
    • 2013
  • The purpose of study was to develop distance education programs that combine the characteristics of the programs for the math gifted students. To this end, the first is to establish the standards for the development of distance programs for the math gifted students. The second is to develop the distance education programs for the elementary school math gifted students according to the program procedure models for distance education. The third is to apply the programs developed to actual distance education field and analyze the results to verify the validity of the programs. This program can increase high-level mathematical thinking power even though it is the distance education, not the face-to-face education. Second, this program make contributions to active mathematical communication through newsgroup or reflective journals. Third, the use of Diffy Game facilitates the selection of in-depth contents, which will in turn enable the development of intensive programs.

  • PDF

Assessment Study on Educational Programs for the Gifted Students in Mathematics (영재학급에서의 수학영재프로그램 평가에 관한 연구)

  • Kim, Jung-Hyun;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.235-257
    • /
    • 2010
  • Contemporary belief is that the creative talented can create new knowledge and lead national development, so lots of countries in the world have interest in Gifted Education. As we well know, U.S.A., England, Russia, Germany, Australia, Israel, and Singapore enforce related laws in Gifted Education to offer Gifted Classes, and our government has also created an Improvement Act in January, 2000 and Enforcement Ordinance for Gifted Improvement Act was also announced in April, 2002. Through this initiation Gifted Education can be possible. Enforcement Ordinance was revised in October, 2008. The main purpose of this revision was to expand the opportunity of Gifted Education to students with special education needs. One of these programs is, the opportunity of Gifted Education to be offered to lots of the Gifted by establishing Special Classes at each school. Also, it is important that the quality of Gifted Education should be combined with the expansion of opportunity for the Gifted. Social opinion is that it will be reckless only to expand the opportunity for the Gifted Education, therefore, assessment on the Teaching and Learning Program for the Gifted is indispensible. In this study, 3 middle schools were selected for the Teaching and Learning Programs in mathematics. Each 1st Grade was reviewed and analyzed through comparative tables between Regular and Gifted Education Programs. Also reviewed was the content of what should be taught, and programs were evaluated on assessment standards which were revised and modified from the present teaching and learning programs in mathematics. Below, research issues were set up to assess the formation of content areas and appropriateness for Teaching and Learning Programs for the Gifted in mathematics. A. Is the formation of special class content areas complying with the 7th national curriculum? 1. Which content areas of regular curriculum is applied in this program? 2. Among Enrichment and Selection in Curriculum for the Gifted, which one is applied in this programs? 3. Are the content areas organized and performed properly? B. Are the Programs for the Gifted appropriate? 1. Are the Educational goals of the Programs aligned with that of Gifted Education in mathematics? 2. Does the content of each program reflect characteristics of mathematical Gifted students and express their mathematical talents? 3. Are Teaching and Learning models and methods diverse enough to express their talents? 4. Can the assessment on each program reflect the Learning goals and content, and enhance Gifted students' thinking ability? The conclusions are as follows: First, the best contents to be taught to the mathematical Gifted were found to be the Numeration, Arithmetic, Geometry, Measurement, Probability, Statistics, Letter and Expression. Also, Enrichment area and Selection area within the curriculum for the Gifted were offered in many ways so that their Giftedness could be fully enhanced. Second, the educational goals of Teaching and Learning Programs for the mathematical Gifted students were in accordance with the directions of mathematical education and philosophy. Also, it reflected that their research ability was successful in reaching the educational goals of improving creativity, thinking ability, problem-solving ability, all of which are required in the set curriculum. In order to accomplish the goals, visualization, symbolization, phasing and exploring strategies were used effectively. Many different of lecturing types, cooperative learning, discovery learning were applied to accomplish the Teaching and Learning model goals. For Teaching and Learning activities, various strategies and models were used to express the students' talents. These activities included experiments, exploration, application, estimation, guess, discussion (conjecture and refutation) reconsideration and so on. There were no mention to the students about evaluation and paper exams. While the program activities were being performed, educational goals and assessment methods were reflected, that is, products, performance assessment, and portfolio were mainly used rather than just paper assessment.

Analysis of Teaching and Learning Process in Physical Computing Class for Elementary Gifted Students in Science (코딩블록을 활용한 초등 과학영재 대상 피지컬 컴퓨팅수업의 교수·학습 과정 분석)

  • Kim, Jiye;Jhun, Youngseok
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.6
    • /
    • pp.613-628
    • /
    • 2018
  • The purpose of this study is to analyze the teaching and learning process of physical computing using coding block for elementary gifted students in science. In order to obtain implications for teaching physical computing, we set the learning objectives from the Computer and Information Literacy Evaluation Standards developed by the International Association for the Evaluation of Educational Achievement(IEA) and developed a teaching and learning program for physical computing through collaboration between science education and computer education experts according to learning objectives. The developed program was related to the use of the coding block MODI(TM) and 32 classes of physical computing instruction were conducted for 15 students of the 4th to 6th grade who belong to an education institute for the gifted in science affiliated to the University. In the physical computing class, the teaching and learning process was analyzed by collecting data such as classroom videos, class observation logs, teacher and student questionnaires, and interviews. Based on the results of the study, the implications of the teaching and learning process of physical computing using the coded blocks in the school education field were suggested. And we also explored the strategy of expanding the computational thinking through the activities of coding instruction to realize creative ideas.

Current Status and Suggestions on Qualification Test of Robotic Technology for Robot Education (로봇교육을 위한 로봇기술자격증 현황 및 제언)

  • Back, Ju-Hoon;Kim, Jin-Oh;Han, Jeong-Hye
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Recently, STEM education and improvement in creativity took a lot of attention in local and foreign educational programs, and the robot education is regarded as one of the answers which can achieve the objectives. The robot education is quite active locally in various ways including robot classes for after school program in elementary schools, a number of robot competitions, and education for the gifted. Under these circumstances, the qualification test for robot technology is developed to provide a standard for evaluating professional knowledge on robotics and is currently under consideration to be one of the government-approved qualification tests. However, compared to the robot classes for after school program, this test is not well recognized by most teachers in elementary and middle schools. This paper addresses and analyzes the current status of the test, in particular, backgrounds, qualification standards, organizing committee, intention of presenting questions, examples of problems used in the test, and demands raised by applicants, etc. Base on the analysis, some suggestions are made to establish a solid standard for evaluating robot technologies. It is suggested that the level of difficulty and contents covered should be properly adjusted considering the level of applicants. In addition, it is essential to provide well organized supplementary material for students and wide range of contents on robot technology. Finally, some efforts including cooperating with the robot classes for after school program should be made to invigorate the test.

  • PDF

Exploring Science Classes and Science Teachers of New York Using Professional Teaching Standards by Korean Teachers

  • Yu, Eun-Jeong;Kim, Kahye;Kim, Myong-Hi
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.435-449
    • /
    • 2013
  • The purpose of this study was to investigate the difference of teachers' interaction with their students when teaching science in New York (NY) and in Korea. As part of the 2011 Korean International Teacher Fellows (KITF), supported by the Ministry of Education, Science and Technology (MEST) and the National Institute for International Education Development (NIIED), Korean science teachers observed, for six months, New York's science classes in terms of how teachers interact with their students and how students learn science during science instruction. The participants were 10 science teachers in five middle and high schools that taught Physics, Chemistry, Biology, Earth Science, and Environment Science in NY. The National Board for Professional Teaching Standards (NBPTS, 2003) and Instruction as Interaction (Cohen et al., 2003) were used as an instrument to identify each teacher's teaching and classroom interaction. Several characteristics of science classes in NY were revealed, which are different from Korean science classes. First, science teachers in NY dominantly put more focus on their subject of teaching during science interaction while, Korean science teachers not only teach science but also do counseling to students as a homeroom teacher. Second, science teachers in NY acknowledged the students' individuality and have positive experiences of professional development supported by their school and district more than Korean science teachers do. Third, science teachers in NY sometimes showed limited knowledge about the concepts of science and lack of collaboration with other science teachers. This characteristics may prevent the school from strengthening its subject program and keeping equity across the grade levels and courses.