• Title/Summary/Keyword: TSMC

Search Result 188, Processing Time 0.032 seconds

Design of Two-Stage Fully-Integrated CMOS Power Amplifier for V-Band Applications (V-대역을 위한 완전 집적된 CMOS 이단 전력증폭기 집적회로 설계)

  • Kim, Hyunjun;Cho, Sooho;Oh, Sungjae;Lim, Wonseob;Kim, Jihoon;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1069-1074
    • /
    • 2016
  • This paper presents a V-band two-stage power amplifier integrated circuit using TSMC 65 nm CMOS process. The simple input, output, and inter-stage matching networks based on passive components are integrated. By compensating for power gain characteristics using a pre-distortion technique, the linearity of the power amplifier was improved. The implemented two-stage power amplifier showed a power gain of 10.4 dB, a saturated output power of 9.7 dBm, and an efficiency of 20.8 % with a supply voltage of 1 V at the frequency band of 58.8 GHz.

Run-Time Hardware Trojans Detection Using On-Chip Bus for System-on-Chip Design (온칩버스를 이용한 런타임 하드웨어 트로이 목마 검출 SoC 설계)

  • Kanda, Guard;Park, Seungyong;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.343-350
    • /
    • 2016
  • A secure and effective on-chip bus for detecting and preventing malicious attacks by infected IPs is presented in this paper. Most system inter-connects (on-chip bus) are vulnerable to hardware Trojan (Malware) attack because all data and control signals are routed. A proposed secure bus with modifications in arbitration, address decoding, and wrapping for bus master and slaves is designed using the Advanced High-Performance and Advance Peripheral Bus (AHB and APB Bus). It is implemented with the concept that arbiter checks share of masters and manage infected masters and slaves in every transaction. The proposed hardware is designed with the Xilinx 14.7 ISE and verified using the HBE-SoC-IPD test board equipped with Virtex4 XC4VLX80 FPGA device. The design has a total gate count of 39K at an operating frequency of 313MHz using the $0.13{\mu}m$ TSMC process.

SoC Design for Malicious Circuit Attack Detection Using on-Chip Bus (온칩버스를 이용한 악성 회로 공격 탐지 SoC 설계)

  • Guard, Kanda;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.885-888
    • /
    • 2015
  • A secure and effective on-chip bus for detecting and preventing malicious attacks by infected IPs is presented in this paper. Most system inter-connect (on-chip bus) are vulnerable to hardware Trojan (Malware) attack because all data and control signals are routed. A proposed secure bus with modifications in arbitration, address decoding, and wrapping for bus master and slaves is designed using the Advanced High-Performance and Advance Peripheral Bus (AHB and APB Bus). It is implemented with the concept that arbiter checks share of masters and manage infected masters and slaves in every transaction. The proposed hardware is designed with the Xilinx 14.7 ISE and verified using the HBE-SoC-IPD test board equipped with Virtex4 XC4VLX80 FPGA device. The design has a total gate count of 40K at an operating frequency of 250MHz using the $0.13{\mu}m$ TSMC process.

  • PDF

Design of a 6-Axis Inertial Sensor IC for Accurate Location and Position Recognition of M2M/IoT Devices (M2M / IoT 디바이스의 정밀 위치와 자세 인식을 위한 6축 관성 센서 IC 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.82-89
    • /
    • 2014
  • Recently, inertial sensors are popularly used for the location and position recognition of small devices for M2M/IoT. In this paper, we designed low power, low noise, small sized 6-axis inertial sensor IC for mobile applications, which uses a 3-axis piezo-electric gyroscope sensor and a 3-axis piezo-resistive accelerometer sensor. Proposed IC is composed of 3-axis gyroscope readout circuit, two gyroscope sensor driving circuits, 3-axis accelerometer readout circuit, 16bit sigma-delta ADC, digital filter and control circuit and memory. TSMC $0.18{\mu}m$ mixed signal CMOS process was used. Proposed IC reduces 27% of the current consumption of LSM330.

A Low Complex and Low Power Baseband IR-UWB Transceiver for Wireless Sensor Network (무선 센서 네트워크 응용을 위한 초광대역 임펄스 통신용 저복잡도, 저전력 베이스밴드 트랜시버)

  • Lee, Soon-Woo;Park, Young-Jin;Kang, Ji-Myung;Kim, Young-Hwa;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.38-44
    • /
    • 2008
  • In this paper, we introduce an low complexity and low power IR-UWB (impulse radio ultra wideband) baseband transceiver for wireless sensor network. The proposed baseband, implemented by TSMC 0.18um CMOS technology, has a simple structure in which a simplified packet structure and a digital synchronizer with 1-bit sampler to detect incoming pulses are used. Besides, clock gating method using gated clock cell as well as customized clock domain division can reduce the total power consumption drastically. As a result, the proposed baseband has about 23K digital gates with an internal memory of 2Kbytes and achieves about 1.8mW@1Mbps power consumption.

Design of Variable Gain Receiver Front-end with Wide Gain Variable Range and Low Power Consumption for 5.25 GHz (5.25 GHz에서 넓은 이득 제어 범위를 갖는 저전력 가변 이득 프론트-엔드 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.257-262
    • /
    • 2010
  • We design a CMOS front-end with wide variable gain and low power consumption for 5.25 GHz band. To obtain wide variable gain range, a p-type metal-oxide-semiconductor field-effect transistor (PMOS FET) in the low noise amplifier (LNA) section is connected in parallel. For a mixer, single balanced and folded structure is employed for low power consumption. Using this structure, the bias currents of the transconductance and switching stages in the mixer can be separated without using current bleeding path. The proposed front-end has a maximum gain of 33.2 dB with a variable gain range of 17 dB. The noise figure and third-order input intercept point (IIP3) are 4.8 dB and -8.5 dBm, respectively. For this operation, the proposed front-end consumes 7.1 mW at high gain mode, and 2.6 mW at low gain mode. The simulation results are performed using Cadence RF spectre with the Taiwan Semiconductor Manufacturing Company (TSMC) $0.18\;{\mu}m$ CMOS technology.)

A New Switchable Dual Mode Voltage Controlled Oscillator (새로운 구조의 스위치형 이중 모드 전압 제어 발진기)

  • Ryu, Jee-Youl;Deboma, Gilbert D.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.869-872
    • /
    • 2005
  • This paper presents a new switchable dual mode VCO(Voltage-Controlled Oscillator). The VCO is efficient in dual mode operation and has self-bias adjustment based on the operation frequencies of 2.4 GHz and 5 GHz. The switching is done using MOS transistors and tuning is done using MOS varactors. It is implemented using TSMC 0.18${\mu}$m CMOS technology. It is powered by 1.8V supply. The measured results showed that the overall tuning range is approximately 13% at 5 GHz and 8% at 2.4 GHz. The measured phase noise is approximately -102 dBc/Hz at 1 MHz offset for 5 GHz and -89 dBc/Hz at 600kHz offset for 2.4 GHz. The VCO showed tail currents of 2mA in 5GHz mode and 2.5mA in 2.4GHz mode from a 1.8 V supply, respectively.

  • PDF

Differential CORDIC-based High-speed Phase Calculator for 3D Depth Image Extraction from TOF Sensor (TOF 센서용 3차원 깊이 영상 추출을 위한 차동 CORDIC 기반 고속 위상 연산기)

  • Koo, Jung-Youn;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.643-650
    • /
    • 2014
  • A hardware implementation of phase calculator for extracting 3D depth image from TOF(Time-Of-Flight) sensor is described. The designed phase calculator adopts redundant binary number systems and a pipelined architecture to improve throughput and speed. It performs arctangent operation using vectoring mode of DCORDIC(Differential COordinate Rotation DIgital Computer) algorithm. Fixed-point MATLAB simulations are carried out to determine the optimal bit-widths and number of iteration. The phase calculator has ben verified by FPGA-in-the-loop verification using MATLAB/Simulink. A test chip has been fabricated using a TSMC $0.18-{\mu}m$ CMOS process, and test results show that the chip functions correctly. It has 82,000 gates and the estimated throughput is 400 MS/s at 400Mhz@1.8V.

Implementation of High Throughput LDPC Code Decoder for DVB-S2 (높은 throughput 성능을 갖는 DVB-S2 LDPC 부호의 복호기 구현)

  • Kim, Seong-Woon;Park, Chang-Soo;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.924-933
    • /
    • 2008
  • This paper proposes a novel LDPC code decoder architecture to improve throughput for DVB-S2, a second generation standard of ETSI for satellite broad-band applications. The proposed architecture clusters 360 bitnodes and checknodes into groups utilizing the property of IRA-LDPC code. Functional modules which perform calculations for bitnode groups and checknode groups have local memories and store the messages from the other type of functional modules connected by edges at their local memories. The proposed architecture can avoid memory conflicts by accessing stored messages sequentially, hence, increases throughput in the proposed DVB-S2 LDPC code decoder architecture. The proposed architecture was synthesized using the TSMC 90nm technology. Synthesis results show that throughput of the proposed architecture is improved by 104% and 478%, respectively, when compared with those of the architectures proposed by F. Kienle and J. Dielissen.

Design of Low Power CMOS LNA for 2.4 GHz ZigBee Applications (2.4 GHz ZigBee 응용을 위한 저전력 CMOS LNA 설계)

  • Cho In-Shin;Yeom Kee-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.259-262
    • /
    • 2006
  • This paper presents a design of low power CMOS LNA(Low Noise Amplifier) for 2.4 GHz ZigBee applications. The proposed circuit has been designed by using TSMC $0.18{\mu}m$ CMOS process and current-reused two-stage cascade topology. LNA design procedures and the simulation results using ADS(Advanced Design System) are presented in this paper. Simulation results shows that the LNA has a extremely low power dissipation of 1.38mW with a $V_{DD}$ of 1.0V. The LNA also has a maximum gain of 13.38dB, input return loss of -20.37dB, output return loss of -22.48dB and noise figure of 1.13dB.

  • PDF