• Title/Summary/Keyword: TS fuzzy controller

Search Result 79, Processing Time 0.024 seconds

Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems (TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

Dynamic State Feedback Controller Synthesis for Fuzzy Models (퍼지 모델을 위한 동적 상태 피드백 제어기 설계)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.528-530
    • /
    • 1999
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex single input single output nonlinear systems. Firstly, the nonlinear system is represented by well-known Takagai-Sugeno (TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller usually is composed of two processes. One is to determine static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative of the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. One simulation example is given to show the effectiveness and feasibility of the proposed fuzzy controller design method.

  • PDF

The Design of Stable Fuzzy Controller for Chaotic Nonlinear Systems (혼돈 비선형 시스템을 위한 안정된 퍼지 제어기의 설계)

  • 최종태;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.429-432
    • /
    • 1998
  • This paper is to design stable fuzzy controller so as to control chaotic nonlinear systems effectively via fuzzy control system and Parallel Distributed Compensation (PDC) design. To design fuzzy control system, nonlinear systems are represented by Takagi-sugeno(TS) fuzzy models. The PDC is employed to design fuzzy controllers from the TS fuzzy models. The stability analysis and control design problems is to find a common Lyapunov function for a set of linear matrix inequalitys(LMIs). The designed fuzzy controller is applied to Rossler system. The simulation results show the effectiveness of our controller.

  • PDF

Generating Chaos from Discrete TS Fuzzy System

  • Zhong Li;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.111-115
    • /
    • 2001
  • In this paper, a simple and systematic control design method is proposed for a discrete-time Takagi-Sugeno(TS) fuzzy system, which employs the parallel distributed compensation(PDC) to determine the structure of a fuzzy controller so as to mark all the Lyaunov exponents of the controlled TS fuzzy system strictly positive. This approach is proven to be mathematically rigorous for anticontrol of chaos for a TS fuzzy system in the sense that any given discrete-time TS fuzzy system can be made chaotic by the designed PDC controller along with the-operation. A numerical example is included to visualize the anticontrol effect.

  • PDF

Design of Switching-Type Controller for Discrete-Time Ts Fuzzy Systems (이산시간 TS 퍼지 시스템의 스위칭모드 제어기의 설계)

  • Kim, Joo-Won;Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2005-2007
    • /
    • 2001
  • A controller design problem for a discrete-time Takagi-Sugeno (TS) fuzzy systems is discussed. The switching-type controller is employed in this study. A switching-type fuzzy-model-based controller is constructed based on the spirit of "devide and conquer". The design condition of this controller is formulated in terms of linear matrix inequalities (LMIs), which guarantees the global stability of the controlled TS fuzzy systems. An example is included for ensuring the effecienct of the proposed control method.

  • PDF

Stabilization Analysis for Switching-Type Fuzzy-Model-Based Controller (스위칭 모드 퍼지 모델 기반 제어기를 위한 안정화 문제 해석)

  • 김주원;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.793-800
    • /
    • 2001
  • This paper deals with a new design methodology for a switching-type fuzzy-model-based controller in continuous and discrete-time system. Takagi-Sugeno (TS) fuzzy model is employed to design the switching-type fuzzy-model-based controller. A switching-type fuzzy-model-based controller is constructed based on the spirit of “divide and conquer”. The global system which has several rules in divided into several subsystems and then, a solution is found at each subsystem. The global solution is determined by a conjunction of the solutions of each subsystem. The design conditions are formulated in terns of linear matrix inequalities (LMIs), which guarantee the stabilization of a given TS fuzzy system. Simulation examples are included for ensuring the proposed control method.

  • PDF

LMI-Based Design of Fuzzy Controllers for Takagi-Sugeno Fuzzy Systems

  • Kim, Jinsung;Park, Jooyoung;Park, Daihee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.326-330
    • /
    • 1998
  • There have been several recent studies concerning the stability of fuzzy control systems and the synthesis of stabilizing fuzzy controller. This paper reports on a related study of the TS(Takagi-Sugeno) fuzzy systems, and it is shown that the controller synthesis problems for the nonlinear systems described by the TS fuzzy model can be reduced to convex problems involving LMIs(Linear matrix inequalities). After classifying the TS fuzzy systems into two families based on how diverse their input matrices are, different controller synthesis procedure is given for each of these families. A numerical example is presented to illustrate the synthesis procedures developed in this paper.

  • PDF

Chaotifying a Continuous-Time TS Fuzzy System with Time-Delay (시간 지연을 이용한 연속시간 TS 퍼지 시스템의 카오스화)

  • Kim, Taek-Ryong;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2215-2217
    • /
    • 2004
  • In this paper, a systematic design approach based on the parallel distributed compensation technique is proposed for chaotifying a general continuous-time Takagi-Sugeno (TS) fuzzy system. The fuzzy parallel distributed compensation controller (FPDCC) is composed of the feedback gain and time-delay feedback. The verification of chaos in the controlled continuous-time TS fuzzy system is done by the following procedures. First, we establish an asymptotically approximate relationship between a time-delay continuous-time TS fuzzy system and a discrete-time TS fuzzy system. Then, Marotto theorem is applied. Therefore, the generated chaos is in the sense of Li and Yorke. The boundedness in the controlled continuous-time TS fuzzy system is also proven via its associated discrete-time TS fuzzy system.

  • PDF

Output Tracking Controller Design of Discrete-Time TS Fuzzy Systems (이산시간 TS 퍼지 시스템의 추종 제어기 설계)

  • 이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.191-194
    • /
    • 2000
  • In this paper, an output tracking control technique of discrete-time Takagi-Sugeno (TS) fuzzy systems is developed. The TS fuzzy system is represented as an uncertain multiple linear system. The tracking problem of TS fuzzy system is converted into the stabilization problem of a uncertain multiple linear system. A sufficient condition for asymptotic tracking is obtained in terms of linear matrix inequalities (LMI). A design example is illustrated to show the effectiveness of the proposed method.

  • PDF

Intelligent Fuzzy Controller for Nonlinear Systems

  • Joo, Young-Hoon;Lee, Sang-Jun;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • In this paper, we proposed an intelligent digital redesign method for a class of fuzzy-model-based controllers, effective fur stabilization of continuous-time nonlinear systems. The TS fuzzy model is used to expend the results of the digital redesign technique to nonlinear systems. The proposed method utilized the recently developed LMI technique to obtain a digitally redesigned fuzzy-model-based controller. The intelligent digital redesign problem is converted to equivalent problem, and the LMI method is used to find the digitally redesigned fuzzy-model-based controller. The stabilization conditions of TS fuzzy model are derived for stabilization in the sense of Laypunov stability. In order to demonstrates the effectiveness and feasibility of the proposed controller design methodology, we applied this method to the single link flexible-joint robot arm.