• Title/Summary/Keyword: Supercapacitor discharge

Search Result 104, Processing Time 0.027 seconds

Hierarchically Structured, Functionalized Graphenes for a Highly Reversible Capacitive Charge Storage

  • Yu, Xu;Park, Ho Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.491.1-491.1
    • /
    • 2014
  • Heteroatom phosphorous-doped graphene aerogel (PGA) with high surface area is successfully synthesized via hydrothermal method for high power and energy supercapacitors, including the advantage of three dimensional internetwork and constitutive graphene skeletons. The morphology of PGA was investigated by the scanning electron microscope, transmission electron microscope. The chemical structure and circumstances were confirmed by Raman and X-ray photoelectron spectroscopy, the phosphorus is successfully incorporated with the graphene sheets. As evidenced by electrochemical measurements, cyclic voltammetry and galvanostatic charge discharge, the hierarchically PGA has an unprecedented high capacitance, which contributes to the excellent high-rate performance of this material for supercapacitor application.

  • PDF

PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor

  • Cho, Seung-Hyun;Joo, Jin-Soo;Jung, Bo-Ram;Ha, Tae-Min;Lee, Jun-Young
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.746-749
    • /
    • 2009
  • Poly(ethylene terephthalate) (PET) fabric/poly(3,4-ethylenedioxythiophene) (PEDOT) composite with stable and high electrochemical activity was fabricated by chemical and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a PET fabric in sequence. Effects of polymerization conditions on the following characteristics of the composite were studied: electrical conductivity and surface morphology. The electrochemical properties were also investigated by cyclic voltammetry and cyclic charge/discharge experiments. The specific volume resistivity, electrical conductivity and specific discharge capacitance of the composite were 0.034 $\Omega-cm$ and 25 S/cm, and 54.5 F/g, respectively.

A Control Design of Energy Storage System for Electric Railway Vehicle Using Supercapacitor (슈퍼커패시터를 이용한 전동차량용 에너지저장시스템의 제어기 설계)

  • Noh, Se-Jin;Lee, Jin-Mok;Son, Kyoung-Min;Choi, Eun-Jin;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.994-995
    • /
    • 2008
  • It is possible to suppress voltage drops, power loading fluctuations and regeneration power lapses for DC railway systems by applying an energy storage system. A electric double layer capacitor (EDLC) of the rapid charge/discharge type has been developed and used in wide ranges. It has a long life, high efficiency and maintenance free/low pollution features as a new energy storage element. In this paper, an efficient charge and discharge control method of a bidirectional DC-DC converter using the supercapacitor is proposed.

  • PDF

Supercapacitor of Auxiliary Electric Power Source in Industrial Safety for High Output (고출력용 산업안전 보조전원의 Supercapacitor)

  • 허진우;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.335-343
    • /
    • 2003
  • In the electrode fabrication of unit cell, it was ascertained that electrochemical characteristics were greatly increased with 90 wt.% of BP-20, 5 wt.% of Super P and 5 wt.% of mixed binder [P(VdF-co-HFP) : PVP =7 : 3] The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. The electrochemical characteristics of 2.3 V/3,000 F grade EDLC were as follows: 0.35 m of DC-ESR (100 A discharge), 0.14 mof AC-ESR (AC amplitude 100 mV), 2.80 Wh/kg (3.73 Wh/L) of energy density and 4.64 kW /kg (6.19 kW/L) of power density. Power output was compatible with electric vehicle applications, uninterrupted power supply and engine starter, in due consideration of Ragone relations.

  • PDF

Analysis of Electrochemical Performance of Reduced Graphene Oxide based Symmetric Supercapacitor with different Aqueous Electrolytes

  • Ravi, Sneha;Kosta, Shivangi;Rana, Kuldeep
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2022
  • Carbon nanomaterials are considered to be the materials of choice for the fabrication of electrochemical energy storage devices due to their stability, cost-effectiveness, well-established processing techniques, and superior performance compared to other active materials. In the present work, reduced graphene oxide (rGO) has been synthesized and used for the fabrication of a symmetric supercapacitor. The electrochemical performance of the fabricated supercapacitors with three different aqueous electrolytes namely 0.5 M H2SO4, 0.5 M H3PO4, and 1.0M Na2SO4 have been compared and analyzed. Among the three electrolytes, the highest areal specific capacitance of 14 mF/cm2 was calculated at a scan rate of 5 mV/s observed with 0.5M H3PO4 electrolyte. The results were also confirmed from the charge/discharge results where the supercapacitor with 0.5M H3PO4 electrolyte delivered a specific capacitance of 11 mF/cm2 at a current density of 0.16 mA/cm2. In order to assess the stability of the supercapacitor with different electrolytes, the cells were subjected to continuous charge/discharge cycling and it was observed that acidic electrolytes showed excellent cyclic stability with no appreciable drop in specific capacitance as compared to the neutral electrolyte.

Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique

  • Kannan, V.;Choi, Jong-Hyeok;Park, Hyun-Chang;Kim, Hyun-Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1399-1402
    • /
    • 2018
  • Nanorod films of cobalt oxide ($Co_3O_4$) have been grown by a unique oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor electrode applications. This technique offers a non-chemical route to achieve large aspect ratio nanorods. The fabricated electrodes at OAD $80^{\circ}$ exhibited a specific capacitance of 2875 F/g. The electrochemically active surface area was $1397cm^{-2}$, estimated from the non-Faradaic capacitive current region. Peak energy and power densities obtained for $Co_3O_4$ nanorods were 57.7 Wh/Kg and 9.5 kW/kg, respectively. The $Co_3O_4$ nanorod electrode showed a good endurance of 2000 charge-discharge cycles with 62% retention. The OAD approach for fabricating supercapacitor nanostructured electrodes can be exploited for the fabrication of a broad range of metal oxide materials.

Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

  • Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1799-1805
    • /
    • 2014
  • In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layer-by-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at $100^{\circ}C$, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-$RGO_{30}$/PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-$RGO_{30}$/PET electrode was found to be $529F/cm^3$ at a current density of $3A/cm^3$, which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-$RGO_{30}$/PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode.

Performance Characteristics of Li-ion Battery and Supercapacitor Hybrid Cell for High Power / Low Temperature Discharge (고출력/저온 방전을 위한 리튬전지와 슈퍼캐패시터 하이브리드 셀의 방전 거동 특성 연구)

  • Jang, Woojin;Hong, Seung-Chul;Hong, Jung-Pyo;Hwang, Taeseon;Oh, Joon-Suk;Ko, Sungyeon;Lee, Gaeun;Ahn, Kyunyoung;Kim, Hyunsoo;Suhr, Jonghwan;Nam, Jae-Do
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.49-57
    • /
    • 2013
  • In this study, we fabricated a parallelly connected Li-ion battery/supercapacitor hybrid cell to combine the advantageous characteristics of Li-ion battery and supercapacitor, high energy density and high power density, respectively, and investigated its discharging characteristics over a wide temperature range from -40 to $25^{\circ}C$. At the initial state of discharging of the hybrid cell, the power was mostly provided by the supercapacitor and then the portion of the Li-ion battery was gradually increased. By installing a switching system into the hybrid cell, which controls the discharging sequence of Li-ion battery and supercapacitor, the maximum power was improved by 40% compared with non switching system. In addition at low temperatures, the power and discharging time of the hybrid cell were significantly enhanced compared to a battery-alone system. The hybrid cell is expected to be applied in electric vehicles and small domestic appliances that require high power at initial discharging state.

Characterization of electrochemical behaviour for supercapacitor based on porous activated carbon composite with various contents of metal-organic framework(MOF) (금속유기골격체(Metal-organic Framework)의 함량에 따른 다공성 활성탄소 복합재료 기반 슈퍼커패시터의 전기화학적 거동 분석)

  • Jeong, Hyeon Taek;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1200-1207
    • /
    • 2020
  • We have fabricated the supercapacitor composed of porous activated carbon, metal-organic framework (MOF) with polymer based solid state electrolyte as a "ion gel" and characterized its electrochemical behaviour as a function of the MOF contents. The electrochemical properties of the supercapacitor were analyzed via cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge test. As a results, the supercapacitor based on porous activated carbon/MOF composite showed the highest capacitance value at 0.5 wt% of MOF contents and decreased capacitance with increase MOF contents over the 0.5 wt%. Consequently, the porous activated carbon/MOF composite based supercapacitor is applicable to various aspect for energy storage device.

Electrical Properties of Supercapacitor Based on Dispersion Controlled Graphene Oxide According to the Change of Solution State by Washing Process (Washing을 통한 상분리 변화에 따른 그래핀 산화물의 분산도 조절 및 슈퍼커패시터의 특성에 관한 연구)

  • Sul, Ji-Hwan;You, In-kyu;Kang, Seok Hun;Kim, Bit-Na;Kim, In Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2018
  • Recently, there has been an increasing interest in the use of graphene as electrode materials for supercapacitors. In this regard, graphene oxide (GO) films were prepared using GO slurry obtained by dispersing GO powder in deionized (DI) water. The degree of dispersion of GO powder in DI water depends on the concentration of GO slurry, pH, impurity content, GO particle size, types of functional groups contained in GO, and manufacturing method of GO powder. In this study, the dispersivity of the GO powder was improved by adjusting the pH using only DI water (without additives), and a uniform GO film was obtained. The GO film was reduced by exposure to xenon intense pulsed light for a few milliseconds, and the reduced GO film was used as electrodes of a supercapacitor. The supercapacitor was characterized using cyclic voltammetry (CV), charge-discharge cycle, and electrochemical impedance spectroscopy measurements, and the specific capacitance of the supercapacitor was found to be ~140 F/g from the CV data.