Acknowledgement
The authors would like to thank the management of Central Power Research Institute, an autonomous institute under the Ministry of Power for their support in conducting the research work.
References
- P. Simon, and Y. Gogotsi. 'Materials for electrochemical capacitors', Nature Materials, 7(11), 845-854 (2008). https://doi.org/10.1038/nmat2297
- B. E. Conway, 'Electrochemical supercapacitors: scientific fundamentals and technological applications', Springer Science & Business Media (2013).
- W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, Y. Cheng, and M. Zhu, 'Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density', Carbon, 113, 151-158 (2017). https://doi.org/10.1016/j.carbon.2016.11.051
- Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen, W. Li, W. Feng, Y. Chen, W. Wang, and Y. Zhang, 'Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor', ACS Appl. Mater. Interfaces, 8(8), 5251-5260 (2016). https://doi.org/10.1021/acsami.5b10649
- X. Yang, H. Niu, H. Jiang, Q. Wang, and F. Qu, 'A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes', J. Mater. Chem. A, 4(29), 11264-11275 (2016). https://doi.org/10.1039/C6TA03474H
- Wang, H. Zhang, and C. Cheng, 'Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor', Chemical Engineering Journal, 308, 1165-1173 (2017). https://doi.org/10.1016/j.cej.2016.10.016
- J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, and L. Wei, 'High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets', Journal of Power Sources, 346, 120-127 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.034
- P. Bandyopadhyay, T. Kuila, J. Balamurugan, T. T. Nguyen, N. H. Kim, and J. H. Lee, 'Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application', Chemical Engineering Journal, 308, 1174-1184 (2017). https://doi.org/10.1016/j.cej.2016.10.015
- K. Rana, S. D. Kim, and J. H. Ahn, 'Additive-free thick graphene film as an anode material for flexible lithium-ion batteries' Nanoscale, 7, 7065-7071 (2015). https://doi.org/10.1039/c4nr06082b
- M. Wang, L. D. Duong, N. T. Mai, S. Kim, Y. Kim, H. Seo, Y. C. Kim, W. Jang, Y. Lee, J. Suhr, and J. D. Nam, 'All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method', ACS Appl. Mater. Interfaces, 7(2), 1348-1354 (2015). https://doi.org/10.1021/am507656q
- H. Zanin, E. Saito, H. J. Ceragioli, V. Baranauskas, and E. J. Corat, 'Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices', Materials Research Bulletin, 49, 487-493 (2014). https://doi.org/10.1016/j.materresbull.2013.09.033
- J. L. Shi, W. C. Du, Y. X. Yin, Y. G. Guo, and L. J. Wan, 'Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors', J. Mater. Chem. A, 2(28), 10830-10834 (2014). https://doi.org/10.1039/c4ta01547a
- J. P. C. Trigueiro, R. L. Lavall, and G. G. Silva, 'Supercapacitors based on modified graphene electrodes with poly (ionic liquid)', Journal of Power Sources, 256, 264-273 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.083
- D. Sun, X. Yan, J. Lang, and Q. Xue, 'High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper', Journal of Power Sources, 222, 52-58 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.059
- T. Fan, W. Zeng, Q. Niu, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, and A. J. Epstein, 'Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor', Nanoscale Res Lett, 10(1), 192 (2015). https://doi.org/10.1186/s11671-015-0894-3
- Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, and X. Chen, 'All-solid-state flexible ultrathin micro-supercapacitors based on graphene', Advanced Materials, 25(29), 4035-4042 (2013). https://doi.org/10.1002/adma.201301332
- Y. Liang, Z. Wang, J. Huang, H. Cheng, F. Zhao, Y. Hu, L. Jiang, and L. Qu, 'Series of in-fiber graphene supercapacitors for flexible wearable devices', J. Mater. Chem. A, 3(6), 2547-2551 (2015). https://doi.org/10.1039/C4TA06574C
- D. Wang, Y. Min, Y. Yu, and B. Peng, 'A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors', Journal of colloid and interface science, 417, 270-277 (2014). https://doi.org/10.1016/j.jcis.2013.11.021
- K. Gao, Z. Shao, X. Wu, X. Wang, Y. Zhang, W. Wang, and F. Wang, 'Paper-based transparent flexible thin film supercapacitors', Nanoscale, 5(12), 5307-5311 (2013). https://doi.org/10.1039/c3nr00674c
- F. T. Johra, and W. G. Jung, 'Hydrothermally reduced graphene oxide as a supercapacitor', Applied Surface Science, 357, 1911-1914 (2015). https://doi.org/10.1016/j.apsusc.2015.09.128
- W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen, and Q. J. Xue, 'Superior micro-supercapacitors based on graphene quantum dots', Advanced Functional Materials, 23(33), 4111-4122 (2013). https://doi.org/10.1002/adfm.201203771
- A Daraghmeh, S. Hussain, I. Saadeddin, L. Servera, E. Xuriguera, A. Cornet, & A. Cirera, 'A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study', Nanoscale Research Letters, 12(1), 639 (2017). https://doi.org/10.1186/s11671-017-2415-z
- R. Shao, J. Niu, J. Liang, M. Liu, Z. Zhang, M. Dou, Y. Huang, and F. Wang, 'Mesopore-and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes', ACS applied materials & interfaces, 9(49), 42797-42805 (2017). https://doi.org/10.1021/acsami.7b14390
- B. Paulchamy, G. Arthi, and B. D. Lignesh, 'A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial', J Nanomed Nanotechnol, 6(1), 253 (2015).
- D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, 'Improved synthesis of graphene oxide', ACS nano, 4(8), 4806-4814 (2010). https://doi.org/10.1021/nn1006368
- S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, 'Hydrazine-reduction of graphite-and graphene oxide', Carbon, 49(9), 3019-3023 (2011). https://doi.org/10.1016/j.carbon.2011.02.071
- Z. S. Wu, K. Parvez, X. Feng, and K. Mullen, 'Graphene-based in-plane micro-supercapacitors with high power and energy densities', Nature communications, 4(1), 1-8 (2013).
- A. Bello, F. Barzegar, M. J. Madito, D. Y. Momodu, A. A. Khaleed, T. M. Masikhwa, J. K. Dangbegnon, and N. Manyala, 'Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes', RSC advances, 6(72), 68141-68149 (2017). https://doi.org/10.1039/C6RA12690A
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, 'A review of electrolyte materials and compositions for electrochemical supercapacitors', Chem. Soc. Rev., 44(21), 7484-7539 (2015). https://doi.org/10.1039/C5CS00303B
- C. X. Guo, and C. M. Li, 'A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance', Energy Environ. Sci., 4(11), 4504-4507 (2011). https://doi.org/10.1039/c1ee01676h
- Q. Abbas, D. Pajak, E. Frackowiak, and F. Beguin, 'Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte', Electrochimica Acta, 140, 132-138 (2014). https://doi.org/10.1016/j.electacta.2014.04.096
- R. Shao, J. Niu, J. Liang, M. Liu, Z. Zhang, M. Dou, Y. Huang, and F. Wang, 'Mesopore-and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes', ACS Appl. Mater. Interfaces, 9(49), 42797-42805 (2017). https://doi.org/10.1021/acsami.7b14390
- S. Sathyamoorthi, S. Tubtimkuna, and M. Sawangphruk, 'Influence of structures and functional groups of carbon on working potentials of supercapacitors in neutral aqueous electrolyte: In situ differential electrochemical mass spectrometry', Journal of Energy Storage, 29, 101379, (2020). https://doi.org/10.1016/j.est.2020.101379
- Kuldeep Rana; K. Naga Mahesh; J. H. Ahn; Vinay Pratap Singh, 'Synthesis of additive free electrode material of supercapacitor for energy storage applications' pp.448, 11th International Conference on Industrial and Information Systems (ICIIS), (2016).