DOI QR코드

DOI QR Code

Analysis of Electrochemical Performance of Reduced Graphene Oxide based Symmetric Supercapacitor with different Aqueous Electrolytes

  • Ravi, Sneha (Electrical Appliances Technology Division, Central Power Research Institute) ;
  • Kosta, Shivangi (Electrical Appliances Technology Division, Central Power Research Institute) ;
  • Rana, Kuldeep (Electrical Appliances Technology Division, Central Power Research Institute)
  • Received : 2021.08.14
  • Accepted : 2021.10.28
  • Published : 2022.02.28

Abstract

Carbon nanomaterials are considered to be the materials of choice for the fabrication of electrochemical energy storage devices due to their stability, cost-effectiveness, well-established processing techniques, and superior performance compared to other active materials. In the present work, reduced graphene oxide (rGO) has been synthesized and used for the fabrication of a symmetric supercapacitor. The electrochemical performance of the fabricated supercapacitors with three different aqueous electrolytes namely 0.5 M H2SO4, 0.5 M H3PO4, and 1.0M Na2SO4 have been compared and analyzed. Among the three electrolytes, the highest areal specific capacitance of 14 mF/cm2 was calculated at a scan rate of 5 mV/s observed with 0.5M H3PO4 electrolyte. The results were also confirmed from the charge/discharge results where the supercapacitor with 0.5M H3PO4 electrolyte delivered a specific capacitance of 11 mF/cm2 at a current density of 0.16 mA/cm2. In order to assess the stability of the supercapacitor with different electrolytes, the cells were subjected to continuous charge/discharge cycling and it was observed that acidic electrolytes showed excellent cyclic stability with no appreciable drop in specific capacitance as compared to the neutral electrolyte.

Keywords

Acknowledgement

The authors would like to thank the management of Central Power Research Institute, an autonomous institute under the Ministry of Power for their support in conducting the research work.

References

  1. P. Simon, and Y. Gogotsi. 'Materials for electrochemical capacitors', Nature Materials, 7(11), 845-854 (2008). https://doi.org/10.1038/nmat2297
  2. B. E. Conway, 'Electrochemical supercapacitors: scientific fundamentals and technological applications', Springer Science & Business Media (2013).
  3. W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, Y. Cheng, and M. Zhu, 'Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density', Carbon, 113, 151-158 (2017). https://doi.org/10.1016/j.carbon.2016.11.051
  4. Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen, W. Li, W. Feng, Y. Chen, W. Wang, and Y. Zhang, 'Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor', ACS Appl. Mater. Interfaces, 8(8), 5251-5260 (2016). https://doi.org/10.1021/acsami.5b10649
  5. X. Yang, H. Niu, H. Jiang, Q. Wang, and F. Qu, 'A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes', J. Mater. Chem. A, 4(29), 11264-11275 (2016). https://doi.org/10.1039/C6TA03474H
  6. Wang, H. Zhang, and C. Cheng, 'Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor', Chemical Engineering Journal, 308, 1165-1173 (2017). https://doi.org/10.1016/j.cej.2016.10.016
  7. J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, and L. Wei, 'High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets', Journal of Power Sources, 346, 120-127 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.034
  8. P. Bandyopadhyay, T. Kuila, J. Balamurugan, T. T. Nguyen, N. H. Kim, and J. H. Lee, 'Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application', Chemical Engineering Journal, 308, 1174-1184 (2017). https://doi.org/10.1016/j.cej.2016.10.015
  9. K. Rana, S. D. Kim, and J. H. Ahn, 'Additive-free thick graphene film as an anode material for flexible lithium-ion batteries' Nanoscale, 7, 7065-7071 (2015). https://doi.org/10.1039/c4nr06082b
  10. M. Wang, L. D. Duong, N. T. Mai, S. Kim, Y. Kim, H. Seo, Y. C. Kim, W. Jang, Y. Lee, J. Suhr, and J. D. Nam, 'All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method', ACS Appl. Mater. Interfaces, 7(2), 1348-1354 (2015). https://doi.org/10.1021/am507656q
  11. H. Zanin, E. Saito, H. J. Ceragioli, V. Baranauskas, and E. J. Corat, 'Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices', Materials Research Bulletin, 49, 487-493 (2014). https://doi.org/10.1016/j.materresbull.2013.09.033
  12. J. L. Shi, W. C. Du, Y. X. Yin, Y. G. Guo, and L. J. Wan, 'Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors', J. Mater. Chem. A, 2(28), 10830-10834 (2014). https://doi.org/10.1039/c4ta01547a
  13. J. P. C. Trigueiro, R. L. Lavall, and G. G. Silva, 'Supercapacitors based on modified graphene electrodes with poly (ionic liquid)', Journal of Power Sources, 256, 264-273 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.083
  14. D. Sun, X. Yan, J. Lang, and Q. Xue, 'High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper', Journal of Power Sources, 222, 52-58 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.059
  15. T. Fan, W. Zeng, Q. Niu, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, and A. J. Epstein, 'Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor', Nanoscale Res Lett, 10(1), 192 (2015). https://doi.org/10.1186/s11671-015-0894-3
  16. Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, and X. Chen, 'All-solid-state flexible ultrathin micro-supercapacitors based on graphene', Advanced Materials, 25(29), 4035-4042 (2013). https://doi.org/10.1002/adma.201301332
  17. Y. Liang, Z. Wang, J. Huang, H. Cheng, F. Zhao, Y. Hu, L. Jiang, and L. Qu, 'Series of in-fiber graphene supercapacitors for flexible wearable devices', J. Mater. Chem. A, 3(6), 2547-2551 (2015). https://doi.org/10.1039/C4TA06574C
  18. D. Wang, Y. Min, Y. Yu, and B. Peng, 'A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors', Journal of colloid and interface science, 417, 270-277 (2014). https://doi.org/10.1016/j.jcis.2013.11.021
  19. K. Gao, Z. Shao, X. Wu, X. Wang, Y. Zhang, W. Wang, and F. Wang, 'Paper-based transparent flexible thin film supercapacitors', Nanoscale, 5(12), 5307-5311 (2013). https://doi.org/10.1039/c3nr00674c
  20. F. T. Johra, and W. G. Jung, 'Hydrothermally reduced graphene oxide as a supercapacitor', Applied Surface Science, 357, 1911-1914 (2015). https://doi.org/10.1016/j.apsusc.2015.09.128
  21. W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen, and Q. J. Xue, 'Superior micro-supercapacitors based on graphene quantum dots', Advanced Functional Materials, 23(33), 4111-4122 (2013). https://doi.org/10.1002/adfm.201203771
  22. A Daraghmeh, S. Hussain, I. Saadeddin, L. Servera, E. Xuriguera, A. Cornet, & A. Cirera, 'A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study', Nanoscale Research Letters, 12(1), 639 (2017). https://doi.org/10.1186/s11671-017-2415-z
  23. R. Shao, J. Niu, J. Liang, M. Liu, Z. Zhang, M. Dou, Y. Huang, and F. Wang, 'Mesopore-and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes', ACS applied materials & interfaces, 9(49), 42797-42805 (2017). https://doi.org/10.1021/acsami.7b14390
  24. B. Paulchamy, G. Arthi, and B. D. Lignesh, 'A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial', J Nanomed Nanotechnol, 6(1), 253 (2015).
  25. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, 'Improved synthesis of graphene oxide', ACS nano, 4(8), 4806-4814 (2010). https://doi.org/10.1021/nn1006368
  26. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, 'Hydrazine-reduction of graphite-and graphene oxide', Carbon, 49(9), 3019-3023 (2011). https://doi.org/10.1016/j.carbon.2011.02.071
  27. Z. S. Wu, K. Parvez, X. Feng, and K. Mullen, 'Graphene-based in-plane micro-supercapacitors with high power and energy densities', Nature communications, 4(1), 1-8 (2013).
  28. A. Bello, F. Barzegar, M. J. Madito, D. Y. Momodu, A. A. Khaleed, T. M. Masikhwa, J. K. Dangbegnon, and N. Manyala, 'Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes', RSC advances, 6(72), 68141-68149 (2017). https://doi.org/10.1039/C6RA12690A
  29. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, 'A review of electrolyte materials and compositions for electrochemical supercapacitors', Chem. Soc. Rev., 44(21), 7484-7539 (2015). https://doi.org/10.1039/C5CS00303B
  30. C. X. Guo, and C. M. Li, 'A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance', Energy Environ. Sci., 4(11), 4504-4507 (2011). https://doi.org/10.1039/c1ee01676h
  31. Q. Abbas, D. Pajak, E. Frackowiak, and F. Beguin, 'Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte', Electrochimica Acta, 140, 132-138 (2014). https://doi.org/10.1016/j.electacta.2014.04.096
  32. R. Shao, J. Niu, J. Liang, M. Liu, Z. Zhang, M. Dou, Y. Huang, and F. Wang, 'Mesopore-and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes', ACS Appl. Mater. Interfaces, 9(49), 42797-42805 (2017). https://doi.org/10.1021/acsami.7b14390
  33. S. Sathyamoorthi, S. Tubtimkuna, and M. Sawangphruk, 'Influence of structures and functional groups of carbon on working potentials of supercapacitors in neutral aqueous electrolyte: In situ differential electrochemical mass spectrometry', Journal of Energy Storage, 29, 101379, (2020). https://doi.org/10.1016/j.est.2020.101379
  34. Kuldeep Rana; K. Naga Mahesh; J. H. Ahn; Vinay Pratap Singh, 'Synthesis of additive free electrode material of supercapacitor for energy storage applications' pp.448, 11th International Conference on Industrial and Information Systems (ICIIS), (2016).