PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor

  • Cho, Seung-Hyun (Polymer Technology Institute, Sungkyunkwan University) ;
  • Joo, Jin-Soo (Department of Physics, Korea University) ;
  • Jung, Bo-Ram (School of Chemical Engineering, Sungkyunkwan University) ;
  • Ha, Tae-Min (School of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Jun-Young (School of Chemical Engineering, Sungkyunkwan University)
  • Published : 2009.10.25

Abstract

Poly(ethylene terephthalate) (PET) fabric/poly(3,4-ethylenedioxythiophene) (PEDOT) composite with stable and high electrochemical activity was fabricated by chemical and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a PET fabric in sequence. Effects of polymerization conditions on the following characteristics of the composite were studied: electrical conductivity and surface morphology. The electrochemical properties were also investigated by cyclic voltammetry and cyclic charge/discharge experiments. The specific volume resistivity, electrical conductivity and specific discharge capacitance of the composite were 0.034 $\Omega-cm$ and 25 S/cm, and 54.5 F/g, respectively.

Keywords

References

  1. M. Mastragostino, C. Arbizzani, and F. Soavi, J. Power Sources, 97-98, 812 (2001) https://doi.org/10.1016/S0378-7753(01)00613-9
  2. K. S. Ryu, K. M. Kim, N. Park, Y. J. Park, and S. H. Chang, J. Power Sources, 103, 365 (2002)
  3. A. M. White and R. C. T. Slade, Syn. Metals, 139, 123 (2003) https://doi.org/10.1016/S0379-6779(03)00039-0
  4. M. Choi, B. Lim, and J. Jang, Macromol. Res., 16, 200 (2008) https://doi.org/10.1007/BF03218853
  5. M. Dietrich, J. Heinze, F. Jonas, and G. Heywang, Electroanalysis, 87, 3369 (1994)
  6. F. Fusalba, N. E. Mehdi, L. Breau, and D. Belanger, Chemistry of Materials, 11, 2743 (1999) https://doi.org/10.1021/cm990129b
  7. Karim et al., Macromol. Res., 16, 337 (2008) https://doi.org/10.1007/BF03218526
  8. Y. Kim et al., Macromol. Res., 16, 185 (2008) https://doi.org/10.1007/BF03218850
  9. F. Jonas and L. Schrader, Syn. Metals, 41, 831 (1991) https://doi.org/10.1016/0379-6779(91)91506-6
  10. C. Kvarnström, H. Neugebauer, and S. Blomquist, Electrochim. Acta, 44, 2739 (1999) https://doi.org/10.1016/S0013-4686(98)00405-8
  11. J. D. Stenger-Smith, C. K. Webber, N. Anderson, A. P. Chafin, K. Zong, and J. R. Reynolds, Journal of Electrochemical Society, 149, A973 (2002) https://doi.org/10.1149/1.1485773
  12. H. K. Kim, M. S. Kim, K. T. Song, Y. H. Park, S. H. Kim, J. S. Joo, and J. Y. Lee, Syn. Metals, 135, 105 (2003) https://doi.org/10.1016/S0379-6779(02)00876-7
  13. B. R. Jung, Y. R. Kwon, J. M. Ko, M. S. Kim, S. H. Cho, J. Y. Lee, and J. Joo, Mol. Cryst. Liq. Cryst., 464, 109 (2007) https://doi.org/10.1080/15421400601030506
  14. A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, J. Chem. Soc. Chem. Comm., 14, 635 (1979)
  15. T. A. Skotheim, Ed., Handbook of Conducting Polymers, Marcel Dekker, New York, 1986
  16. L. L. Madsen, K. Carneiro, B. N. Zaba, and A. E. Underhill, Syn. Metals, 41-43, 2931 (1991)
  17. W. S. Shim, Y. H. Lee, I. H. Yoo, J. Y. Lee, and D. S. Lee, Syn. Metals, 104, 119 (1999) https://doi.org/10.1016/S0379-6779(99)00004-1
  18. K. M. Kim, M. G. Kang, N. G. Park, and S. H. Chang, Electrochim. Acta, 50, 843 (2004) https://doi.org/10.1016/j.electacta.2004.02.055
  19. H. Tang, L. Zhu, Y. Harima, and K. Yamashita, Syn. Metals, 110, 105 (2000) https://doi.org/10.1016/S0379-6779(99)00269-6