Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.6.1799

Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application  

Sarker, Ashis K. (Department of Chemistry, Incheon National University)
Hong, Jong-Dal (Department of Chemistry, Incheon National University)
Publication Information
Abstract
In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layer-by-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at $100^{\circ}C$, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-$RGO_{30}$/PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-$RGO_{30}$/PET electrode was found to be $529F/cm^3$ at a current density of $3A/cm^3$, which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-$RGO_{30}$/PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode.
Keywords
Reduced graphene oxide; Polyaniline; Flexibility; Conductivity; Supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, C.; Zhang, J.; Shi, G.; Chen, F. J. Appl. Polym. Sci. 2004, 92, 171.   DOI
2 Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. Science 2008, 321, 1468.   DOI   ScienceOn
3 Rogers, J. A.; Someya, T.; Huang, Y. G. Science 2010, 327, 1603.   DOI   ScienceOn
4 Saxena, S.; Tyson, T. A.; Shukla, S.; Negusse, E.; Chen, H. Y.; Bai, J. M. Appl. Phys. Lett. 2011, 99, 013104.   DOI
5 Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S. J.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I. H.; Field, D. A.; Ventrice, C. A., Jr.; Ruoff, R. S. Carbon 2009, 47, 145.   DOI   ScienceOn
6 Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Adv. Funct. Mater. 2009, 19, 2577.   DOI   ScienceOn
7 Byon, H. R.; Lee, S. W.; Chen, S.; Hammond, P. T.; Horn, Y. S. Carbon 2011, 49, 457.   DOI   ScienceOn
8 Sharma, S. N. Mater. Chem. Phys. 2006, 100, 345.   DOI
9 Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4, 1963.   DOI   ScienceOn
10 Niu, Z.; Zhang, L.; Liu, L.; Zhu, B.; Dong, H.; Chen, X. D. Adv. Mater. 2013, 25, 4035.   DOI
11 Sarker, A. K.; Hong, J. D. Colloids and Surfaces A: Physicochem. Eng. Aspects 2013, 436, 967.   DOI
12 Singh, B. P.; Nayak, S.; Nanda, K. K.; Jena, B. K.; Bhattacharjee, S.; Besra, L. D. Carbon 2013, 61, 47.   DOI
13 Scarpa, F.; Adhikari, S.; Phani, A. S. Nanotechnology 2009, 20, 065709.   DOI   ScienceOn
14 Sarker, A. K.; Hong, J. D. Langmuir 2012, 28, 12637.   DOI
15 Oliveira, H. P.; Sydlik, S. A.; Swager, T. M. J. Phys. Chem. C 2013, 117, 10270.   DOI
16 Alvi, F.; Ram, M. K.; Basnayaka, P.; Stefanakos, E.; Goswami, Y.; Hoff, A.; Kumar, A. ECS Trans. 2011, 35, 167.
17 Wang, Y. G.; Li, H.Q.; Xia, Y. Y. Adv. Mater. 2006, 18, 2619.   DOI   ScienceOn
18 Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Carbon 2010, 48, 487.   DOI   ScienceOn
19 Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Chem. Mater. 2010, 22, 1392.   DOI   ScienceOn
20 Feng, X. M.; Li, R. M.; Ma, Y. W.; Chen, R. F.; Shi, N. E.; Fan, Q. L. W. Adv. Funct. Mater. 2011, 21, 2989.   DOI   ScienceOn
21 Zhang, S.; Zeng, M.; Xu, W.; Li, J.; Xu, J.; Wang, X. DaltonTrans. 2013, 42, 7854.   DOI
22 Gwon, H.; Kim, H. S.; Lee, K. U.; Seo, D. H.; Park, Y. C.; Lee, Y. S.; Ahn, B. T.; Kang, K. Energy Environ. Sci. 2011, 4, 1277.   DOI
23 Feng, X.; Yan, Z.; Chen, N.; Zhang, Y.; Liu, Z.; Ma, Y.; Yang, Z.; Hou, W. New J. Chem. 2013, 37, 2203.   DOI
24 Chen, W.; Rakhi, R. B.; Alsharref, H. N. Nanoscale 2013, 5, 4134.   DOI
25 Decher, G.; Hong, J. D. Ber. Bunsen-Ges. Phys. Chem. 1991, 95, 1430.   DOI
26 Clark, K.W.; Zhang, X. G.; Vlassiouk, I. V.; He, G. W.; Feenstra, R. M.; Li, A. P. ACS Nano 2013, 7, 7956.   DOI
27 Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S. Y.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J. Y.; Park, J.; Ruoff, R. S. ACS Nano 2011, 5, 1321.   DOI   ScienceOn
28 Fu, Y.; Weiss, R. A. Synth. Met. 1997, 84, 129.   DOI
29 Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. M. Carbon 2010, 48, 4466.   DOI   ScienceOn
30 Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, C. G. Nat. Nanotechnol. 2008, 3, 101.   DOI   ScienceOn