DOI QR코드

DOI QR Code

Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique

  • Kannan, V. (Millimeter-wave INnovation Technology Research Center (MINT), Dongguk University-Seoul) ;
  • Choi, Jong-Hyeok (Division of Electronics and Electrical Engineering, Dongguk University-Seoul) ;
  • Park, Hyun-Chang (Division of Electronics and Electrical Engineering, Dongguk University-Seoul) ;
  • Kim, Hyun-Seok (Division of Electronics and Electrical Engineering, Dongguk University-Seoul)
  • Received : 2018.05.26
  • Accepted : 2018.08.08
  • Published : 2018.11.30

Abstract

Nanorod films of cobalt oxide ($Co_3O_4$) have been grown by a unique oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor electrode applications. This technique offers a non-chemical route to achieve large aspect ratio nanorods. The fabricated electrodes at OAD $80^{\circ}$ exhibited a specific capacitance of 2875 F/g. The electrochemically active surface area was $1397cm^{-2}$, estimated from the non-Faradaic capacitive current region. Peak energy and power densities obtained for $Co_3O_4$ nanorods were 57.7 Wh/Kg and 9.5 kW/kg, respectively. The $Co_3O_4$ nanorod electrode showed a good endurance of 2000 charge-discharge cycles with 62% retention. The OAD approach for fabricating supercapacitor nanostructured electrodes can be exploited for the fabrication of a broad range of metal oxide materials.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea (NRF)

References

  1. S. Takada, M. Fujii, S. Kohiki, T. Babasaki, H. Deguchi, M. Mitome, M. Oku, Nano Lett. 1 (2001) 379-382. https://doi.org/10.1021/nl015538x
  2. S.R. Ahmed, S. Ogale, G.C. Papaefthymiou, R. Ramesh, P. Kofinas, Appl. Phys. Lett. 80 (2002) 1616-1618. https://doi.org/10.1063/1.1456258
  3. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nano Lett. 12 (2012) 2559-2567. https://doi.org/10.1021/nl300779a
  4. J.W. Lang, X.B. Yan, Q.J. Xue, J. Power Sources 196 (2011) 7841-7846. https://doi.org/10.1016/j.jpowsour.2011.04.010
  5. J.B. Wu, Y. Lin, X.H. Xia, J.Y. Xu, Q.Y. Shi, Electrochim. Acta 56 (2011) 7163-7170. https://doi.org/10.1016/j.electacta.2011.05.067
  6. D. Vick, L.J. Friedrich, S.K. Dew, M.J. Brett, K. Robbie, M. Seto, T. Smy, Thin Solid Films 339 (1999) 88-94. https://doi.org/10.1016/S0040-6090(98)01154-7
  7. V. Kannan, A.I. Inamdar, S.M. Pawar, H.S. Kim, H.C. Park, H. Kim, H. Im, Y.S. Chae, ACS Appl. Mater. Interfaces 8 (2016) 17220-17225. https://doi.org/10.1021/acsami.6b03714
  8. D.W. Wang, F. Li, H.M. Cheng, J. Power Sources 185 (2008) 1563-1568. https://doi.org/10.1016/j.jpowsour.2008.08.032
  9. C.L.M. Charles, S. Jung, C.P. Jonas, F.J. Thomas, J. Am. Chem. Soc. 135 (2013) 16977-16987. https://doi.org/10.1021/ja407115p
  10. Y.B. Liu, L.Y. Lin, Y.Y. Huang, C.C. Tu, J. Power Sources 315 (2016) 23-34. https://doi.org/10.1016/j.jpowsour.2016.03.035
  11. R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, ACS Nano 9 (2015) 6288-6296. https://doi.org/10.1021/acsnano.5b01790
  12. R. Kumar, H.J. Kim, S. Park, A. Srivastava, I.K. Oh, Carbon 79 (2017) 192-202.
  13. G. Meng, Q. Yang, X. Wu, P. Wan, Y. Li, X. Lei, X. Sun, J. Liu, Nano Energy 30 (2016) 831-839. https://doi.org/10.1016/j.nanoen.2016.09.012
  14. M. Pal, R. Rakshit, A.K. Singh, K. Mandal, Energy 103 (2016) 481-486. https://doi.org/10.1016/j.energy.2016.02.139
  15. J. Tang, Y. Ge, J. Shen, M. Ye, ChemComm 52 (2016) 1509-1512.
  16. Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, ACS Nano 9 (2015) 5310-5317. https://doi.org/10.1021/acsnano.5b00821
  17. A.D. Jagadale, V.S. Kumbhar, D.S. Dhawale, C.D. Lokhande, Electrochim. Acta 98 (2013) 323-338.
  18. S.G. Kandalkar, H.M. Lee, H. Chae, C.K. Kim, Mater. Res. Bull. 46 (2011) 48-51. https://doi.org/10.1016/j.materresbull.2010.09.041