Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.08.004

Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique  

Kannan, V. (Millimeter-wave INnovation Technology Research Center (MINT), Dongguk University-Seoul)
Choi, Jong-Hyeok (Division of Electronics and Electrical Engineering, Dongguk University-Seoul)
Park, Hyun-Chang (Division of Electronics and Electrical Engineering, Dongguk University-Seoul)
Kim, Hyun-Seok (Division of Electronics and Electrical Engineering, Dongguk University-Seoul)
Abstract
Nanorod films of cobalt oxide ($Co_3O_4$) have been grown by a unique oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor electrode applications. This technique offers a non-chemical route to achieve large aspect ratio nanorods. The fabricated electrodes at OAD $80^{\circ}$ exhibited a specific capacitance of 2875 F/g. The electrochemically active surface area was $1397cm^{-2}$, estimated from the non-Faradaic capacitive current region. Peak energy and power densities obtained for $Co_3O_4$ nanorods were 57.7 Wh/Kg and 9.5 kW/kg, respectively. The $Co_3O_4$ nanorod electrode showed a good endurance of 2000 charge-discharge cycles with 62% retention. The OAD approach for fabricating supercapacitor nanostructured electrodes can be exploited for the fabrication of a broad range of metal oxide materials.
Keywords
Electrochemical supercapacitor; $Co_3O_4$; Physical vapor deposition; Nanorods; Thin films;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Takada, M. Fujii, S. Kohiki, T. Babasaki, H. Deguchi, M. Mitome, M. Oku, Nano Lett. 1 (2001) 379-382.   DOI
2 S.R. Ahmed, S. Ogale, G.C. Papaefthymiou, R. Ramesh, P. Kofinas, Appl. Phys. Lett. 80 (2002) 1616-1618.   DOI
3 R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nano Lett. 12 (2012) 2559-2567.   DOI
4 J.W. Lang, X.B. Yan, Q.J. Xue, J. Power Sources 196 (2011) 7841-7846.   DOI
5 J.B. Wu, Y. Lin, X.H. Xia, J.Y. Xu, Q.Y. Shi, Electrochim. Acta 56 (2011) 7163-7170.   DOI
6 D. Vick, L.J. Friedrich, S.K. Dew, M.J. Brett, K. Robbie, M. Seto, T. Smy, Thin Solid Films 339 (1999) 88-94.   DOI
7 V. Kannan, A.I. Inamdar, S.M. Pawar, H.S. Kim, H.C. Park, H. Kim, H. Im, Y.S. Chae, ACS Appl. Mater. Interfaces 8 (2016) 17220-17225.   DOI
8 D.W. Wang, F. Li, H.M. Cheng, J. Power Sources 185 (2008) 1563-1568.   DOI
9 C.L.M. Charles, S. Jung, C.P. Jonas, F.J. Thomas, J. Am. Chem. Soc. 135 (2013) 16977-16987.   DOI
10 Y.B. Liu, L.Y. Lin, Y.Y. Huang, C.C. Tu, J. Power Sources 315 (2016) 23-34.   DOI
11 R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, ACS Nano 9 (2015) 6288-6296.   DOI
12 R. Kumar, H.J. Kim, S. Park, A. Srivastava, I.K. Oh, Carbon 79 (2017) 192-202.
13 G. Meng, Q. Yang, X. Wu, P. Wan, Y. Li, X. Lei, X. Sun, J. Liu, Nano Energy 30 (2016) 831-839.   DOI
14 M. Pal, R. Rakshit, A.K. Singh, K. Mandal, Energy 103 (2016) 481-486.   DOI
15 J. Tang, Y. Ge, J. Shen, M. Ye, ChemComm 52 (2016) 1509-1512.
16 Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, ACS Nano 9 (2015) 5310-5317.   DOI
17 S.G. Kandalkar, H.M. Lee, H. Chae, C.K. Kim, Mater. Res. Bull. 46 (2011) 48-51.   DOI
18 A.D. Jagadale, V.S. Kumbhar, D.S. Dhawale, C.D. Lokhande, Electrochim. Acta 98 (2013) 323-338.