• Title/Summary/Keyword: Subthreshold swing voltage

Search Result 120, Processing Time 0.023 seconds

Hybrid Insulator Organic Thin Film Transistors With Improved Mobility Characteristics

  • Park, Chang-Bum;Jin, Sung-Hun;Park, Byung-Gook;Lee, Jong-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1291-1293
    • /
    • 2005
  • Hybrid insulator pentacene thin film transistors (TFTs) were fabricated with thermally grown oxide and cross-linked polyvinylalcohol (PVA) including surface treatment by dilute ploymethylmethacrylate (PMMA) layers on $n^+$ doped silicon wafer. Through the optimization of $SiO_2$ layer thickness in hybrid insulator structure, carrier mobility was increased to above 35 times than that of the TFT only with the gate insulator of $SiO_2$ at the same transverse electric field. The carrier mobility of 1.80 $cm^2$/V-s, subthreshold swing of 1.81 V/decade, and $I_{on}$/ $I_{off}$ current ratio > 1.10 × $10^5$ were obtained at low bias (less than -30 V) condition. The result is one of the best reported performances of pentacne TFTs with hybrid insulator including cross-linked PVA material at low voltage operation.

  • PDF

TFT production and electric characteristic comparison by ELA and MICC technique (ELA 및 MICC 기법을 이용한 TFT의 제작 및 전기적 특성 비교)

  • Park, Tae-Ung;Lee, Won-Back;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.146-146
    • /
    • 2010
  • Electrical properties of Large-grain-size TIT with 7/7 ${\mu}m$ channel width and length which gate insulator is made of 20nm $SiO_2$ and 80nm $SiN_x$. was fabricated and measured with Large-grain-size technic(MICC) and compared to ELA technic's data. The field-effect mobility was decreased from 106.78 to $88.74\;cm^2$/Vs and threshold voltage also decreased from -1.8382 to -0.9529 V, when TFT process is changed from ELA technic to MICC technic. Subthreshold swing, also, increased from 0.22 to 0.32 V/dec and $I_{on/off}$ ratio decreased from $1.12{\times}10^8$ to $5.75{\times}10^7$.

  • PDF

Evaluation of Electrical Properties of IZO Thin-Film with UV Post-Annealing Treatment Time (IZO 박막 트랜지스터의 UV를 이용한 후열처리 조사 시간에 따른 전기적 특성 평가)

  • Lee, Jae-Yun;Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • We investigated the effect of a post-annealing process using ultraviolet (UV) light on the electrical properties of solution-processed InZnO (IZO) thin-film transistors (TFTs). UV light was irradiated on IZO TFTs for different time periods of 0s, 30s, and 90s. We measured transfer and retention stability curves to evaluate the performance of the fabricated TFTs. In addition, we measured height, amplitude, and phase AFM images to analyze changes in the surface and morphology of the devices. AFM measurements were performed by setting the drive amplitude of the cantilever tip to 47.9 mV in tapping mode, then dividing the device surface into 500 nm × 500 nm. In the case of IZO TFT irradiated with UV for 30s, the electron mobility and Ion/Ioff ratio were improved, the threshold voltage was reduced by approximately 2 V, and the subthreshold swing also decreased form 1.34 V/dec to 1.11 V/dec.

a-Si TFT 제작시 RF-power 가변에 따른 전기적 특성

  • Baek, Gyeong-Hyeon;Jeong, Seong-Uk;Jang, Gyeong-Su;Yu, Gyeong-Yeol;An, Si-Hyeon;Jo, Jae-Hyeon;Park, Hyeong-Sik;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.116-116
    • /
    • 2011
  • 오늘날 표시장치는 경량, 고밀도, 고해상도 대면적화의 요구에 의해 TFT-LCD의 발전이 이루어졌다. TFT에는 반도체 재료로서, Poly-Si을 사용하는 Poly-Si TFT와 a-Si:H를 이용하는 a-Si;H TFT가 있는데 a-Si는 $350^{\circ}C$ 이하의 저온으로 제작이 가능하여 많이 사용되고 있다. 이러한 방향에 맞추어 bottom gate 구조의 a-Si TFT 실험을 진행하였다. P-type silicon substrate ($0.01{\sim}0.02{\Omega}-cm$)에 gate insulator 층인 SiNx (SiH4 : NH3 = 6:60)를 200nm 증착하였다. 그리고 그 위에 active layer 층인 a-Si (SiH4 : H2 : He =2.6 : 10 : 100)을 다른 RF power를 적용하여 100 nm 증착하였다. 그 위에 Source와 Drain 층은 Al 120 nm를 evaporator로 증착하였다. active layer, gate insulator 층은 ICP-CVD 장비를 이용하여 증착하였으며, 공정온도는 $300^{\circ}C$ 로 고정하였다. active layer층 증착시 RF power는 100W, 300W, 500W, 600W로 가변하였고, width/length는 100 um/8um로 고정하였다. 증착한 a-Si layer층을 Raman spectroscope, SEM 측정 하였으며, TFT 제작 후, VG-ID, VD-ID 측정을 통해 전기적 특성인 Threshold voltage, Subthreshold swing, Field effect mobility, ON/OFF current ratio를 비교해 보았다.

  • PDF

Investigation of Optimal Channel Doping Concentration for 0.1\;μm SOI-MOSFET by Process and Device Simulation ([ 0.1\;μm ] SOI-MOSFET의 적정 채널도핑농도에 관한 시뮬레이션 연구)

  • Choe, Kwang-Su
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.272-276
    • /
    • 2008
  • In submicron MOSFET devices, maintaining the ratio between the channel length (L) and the channel depth (D) at 3 : 1 or larger is known to be critical in preventing deleterious short-channel effects. In this study, n-type SOI-MOSFETs with a channel length of $0.1\;{\mu}m$ and a Si film thickness (channel depth) of $0.033\;{\mu}m$ (L : D = 3 : 1) were virtually fabricated using a TSUPREM-4 process simulator. To form functioning transistors on the very thin Si film, a protective layer of $0.08\;{\mu}m$-thick surface oxide was deposited prior to the source/drain ion implantation so as to dampen the speed of the incoming As ions. The p-type boron doping concentration of the Si film, in which the device channel is formed, was used as the key variable in the process simulation. The finished devices were electrically tested with a Medici device simulator. The result showed that, for a given channel doping concentration of $1.9{\sim}2.5\;{\times}\;10^{18}\;cm^{-3}$, the threshold voltage was $0.5{\sim}0.7\;V$, and the subthreshold swing was $70{\sim}80\;mV/dec$. These value ranges are all fairly reasonable and should form a 'magic region' in which SOI-MOSFETs run optimally.

4.1” Transparent QCIF AMOLED Display Driven by High Mobility Bottom Gate a-IGZO Thin-film Transistors

  • Jeong, J.K.;Kim, M.;Jeong, J.H.;Lee, H.J.;Ahn, T.K.;Shin, H.S.;Kang, K.Y.;Park, J.S.;Yang, H,;Chung, H.J.;Mo, Y.G.;Kim, H.D.;Seo, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.145-148
    • /
    • 2007
  • The authors report on the fabrication of thin film transistors (TFTs) that use amorphous indium-gallium-zinc oxide (a-IGZO) channel and have the channel length (L) and width (W) patterned by dry etching. To prevent the plasma damage of active channel, a 100-nm-thckness $SiO_{x}$ by PECVD was adopted as an etch-stopper structure. IGZO TFT (W/L=10/50${\mu}m$) fabricated on glass exhibited the high performance mobility of $35.8\;cm^2/Vs$, a subthreshold gate voltage swing of $0.59V/dec$, and $I_{on/off}$ of $4.9{\times}10^6$. In addition, 4.1” transparent QCIF active-matrix organic light-emitting diode display were successfully fabricated, which was driven by a-IGZO TFTs.

  • PDF

Interface State Control of Amorphous InGaZnO Thin Film Transistor by Surface Treatment of Gate Insulator (게이트 절연막의 표면처리에 의한 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 계면 상태 조절)

  • Kim, Bo-Sul;Kim, Do-Hyung;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.693-696
    • /
    • 2011
  • Recently, amorphous oxide semiconductors (AOSs) based thin-film transistors (TFTs) have received considerable attention for application in the next generation displays industry. The research trends of AOSs based TFTs investigation have focused on the high device performance. The electrical properties of the TFTs are influenced by trap density. In particular, the threshold voltage ($V_{th}$) and subthreshold swing (SS) essentially depend on the semiconductor/gate-insulator interface trap. In this article, we investigated the effects of Ar plasma-treated $SiO_2$ insulator on the interfacial property and the device performances of amorphous indium gallium zinc oxide (a-IGZO) TFTs. We report on the improvement in interfacial characteristics between a-IGZO channel layer and gate insulator depending on Ar power in plasma process, since the change of treatment power could result in different plasma damage on the interface.

터널 전계 효과 트랜지스터의 양자모델에 따른 특성 변화

  • Lee, Ju Chan;Ahn, Tae Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.454-456
    • /
    • 2017
  • Current and capacitance-voltage characteristics of tunnel field effect transistor (TFET) with various quantum models were investigated. Density gradient, Bohm quantum potential (BQP), and Vandort quantum correction are used with calibrating against Schrodinger-Poisson model. Drive-currents in all models. are decreased. When only BQP is used, SS and $V_{onset}$ are fixed but drive-current is decreased 3 times more than those of no quantum model. And When BQP with Vandort and density gradient are used, SS increased more than 40 mV./dec and $V_{onset}$ shifted as 0.07 eV.

  • PDF

Improvement of Electrical Characteristics of MOSFETs Using High Pressure Deuterium Annealing (고압 중수소 열처리에 의한 MOSFETs의 특성 개선에 대한 연구)

  • Jung, Dae-Han;Ku, Ja-Yun;Wang, Dong-Hyun;Son, Young-Seo;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.264-268
    • /
    • 2022
  • High pressure deuterium (HPD) annealing is an advancing technology for the fabrication of modern semiconductor devices. In this work, gate-enclosed FETs are fabricated on a silicon substrate as test vehicles. After a cycle for the HPD annealing, the device parameters such as threshold voltage (VTH), subthreshold swing (SS), on-state current (ION), off-state current (IOFF), and gate leakage (IG) were measured and compared depending on the HPD. The HPD annealing can passivate the dangling bonds at Si-SiO2 interfaces as well as eliminate the bulk trap in SiO2. It can be concluded that adding the HPD annealing as a fabrication process is very effective in improving device reliability, performance, and variability.

Fabrication of Enclosed-Layout Transistors (ELTs) Through Low-Temperature Deuterium Annealing and Their Electrical Characterizations (저온 중수소 어닐링을 활용한 Enclosed-Layout Transistors (ELTs) 소자의 제작 및 전기적 특성분석)

  • Dong-Hyun Wang;Dong-Ho Kim;Tae-Hyun Kil;Ji-Yeong Yeon;Yong-Sik Kim;Jun-Young Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.43-47
    • /
    • 2024
  • The size of semiconductor devices has been scaled down to improve packing density and output performance. However, there is uncontrollable spreading of the dopants that comprise the well, punch-stop, and channel-stop when using high-temperature annealing processes, such as rapid thermal annealing (RTA). In this context, low-temperature deuterium annealing (LTDA) performed at a low temperature of 300℃ is proposed to reduce the thermal budget during CMOS fabrication. The LTDA effectively eliminates the interface trap in the gate dielectric layer, thereby improving the electrical characteristics of devices, such as threshold voltage (VTH), subthreshold swing (SS), on-state current (ION), and off-state current (IOFF). Moreover, the LTDA is perfectly compatible with CMOS processes.