Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.9.693

Interface State Control of Amorphous InGaZnO Thin Film Transistor by Surface Treatment of Gate Insulator  

Kim, Bo-Sul (Electronic Materials Center, Material Science and Technology Research Division, Korea Institute of Science and Technology)
Kim, Do-Hyung (Electronic Materials Center, Material Science and Technology Research Division, Korea Institute of Science and Technology)
Lee, Sang-Yeol (Electronic Materials Center, Material Science and Technology Research Division, Korea Institute of Science and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.9, 2011 , pp. 693-696 More about this Journal
Abstract
Recently, amorphous oxide semiconductors (AOSs) based thin-film transistors (TFTs) have received considerable attention for application in the next generation displays industry. The research trends of AOSs based TFTs investigation have focused on the high device performance. The electrical properties of the TFTs are influenced by trap density. In particular, the threshold voltage ($V_{th}$) and subthreshold swing (SS) essentially depend on the semiconductor/gate-insulator interface trap. In this article, we investigated the effects of Ar plasma-treated $SiO_2$ insulator on the interfacial property and the device performances of amorphous indium gallium zinc oxide (a-IGZO) TFTs. We report on the improvement in interfacial characteristics between a-IGZO channel layer and gate insulator depending on Ar power in plasma process, since the change of treatment power could result in different plasma damage on the interface.
Keywords
a-IGZO; Amorphous oxide semiconductor; Surface treatment; Transistor; Total trap density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, Jpn. J. Appl. Phys., 48, 031301 (2009).   DOI
2 K. Nomura, A. Takagi, T. Kamiya, H. OHTA, M. Hirano, and H. Hosono, J. Appl. Phys., 45, 5 (2006).
3 S. Y. Lee, Y. W. Song, and S. P. Chang, J. IEEK, 35, 60 (2008).
4 Y. Orikasa, M. Hayashi, and S. Muranaka, J. Appl. Phys., 103, 113703 (2008).   DOI
5 M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, Appl. Phys. Lett., 95, 072104 (2009).   DOI
6 E. G. Chong, K. C. Jo, S. H. Kim, and S. Y. Lee, J. KIEEME., 23, 5 (2010).
7 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004).   DOI
8 E. G. Chong, S. H. Kim, and S. Y. Lee, Appl. Phys. Lett., 97, 252112 (2010).   DOI
9 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 23, 1269 (2003).
10 J. S. Park, K. S. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, Adv. Mater., 21, 329.
11 E. G. Chong, Y. S. Chun, and S. Y. Lee, Appl. Phys. Lett., 97, 102102 (2010).   DOI
12 E. G. Chong, Y. S. Chun, and S. Y. Lee, Electrochem. Solid State Lett., 14, 96 (2011).
13 M. Furuta, T. Nakanishi, M. Kimura, T. Hiramatsu, T. Matsuda, H. Furuta, T. Kawaharamura, C. Li, and T. Hirao, Electrochem. Solid State Lett., 13, 101 (2010).