• Title/Summary/Keyword: Submodule

Search Result 150, Processing Time 0.024 seconds

A NOTE ON w-NOETHERIAN RINGS

  • Xing, Shiqi;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.541-548
    • /
    • 2015
  • Let R be a commutative ring. An R-module M is called a w-Noetherian module if every submodule of M is of w-finite type. R is called a w-Noetherian ring if R as an R-module is a w-Noetherian module. In this paper, we present an exact version of the Eakin-Nagata Theorem on w-Noetherian rings. To do this, we prove the Formanek Theorem for w-Noetherian rings. Further, we point out by an example that the condition (${\dag}$) in the Chung-Ha-Kim version of the Eakin-Nagata Theorem on SM domains is essential.

ALMOST PRINCIPALLY SMALL INJECTIVE RINGS

  • Xiang, Yueming
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1189-1201
    • /
    • 2011
  • Let R be a ring and M a right R-module, S = $End_R$(M). The module M is called almost principally small injective (or APS-injective for short) if, for any a ${\in}$ J(R), there exists an S-submodule $X_a$ of M such that $l_Mr_R$(a) = Ma $Ma{\bigoplus}X_a$ as left S-modules. If $R_R$ is a APS-injective module, then we call R a right APS-injective ring. We develop, in this paper, APS-injective rings as a generalization of PS-injective rings and AP-injective rings. Many examples of APS-injective rings are listed. We also extend some results on PS-injective rings and AP-injective rings to APS-injective rings.

ON INJECTIVITY AND P-INJECTIVITY

  • Xiao Guangshi;Tong Wenting
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.299-307
    • /
    • 2006
  • The following results ale extended from P-injective rings to AP-injective rings: (1) R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $_R(M/Z(M))$ is projective, where Z(M) is the left singular submodule of $_{R}M$; (2) if R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. In addition, we answer a question of Roger Yue Chi Ming [13] in the positive. Let R be a ring whose every simple singular left R-module is Y J-injective. If R is a right MI-ring whose every essential right ideal is an essential left ideal, then R is a left and right self-injective regular, left and right V-ring of bounded index.

X-LIFTING MODULES OVER RIGHT PERFECT RINGS

  • Chang, Chae-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • Keskin and Harmanci defined the family B(M,X) = ${A{\leq}M|{\exists}Y{\leq}X,{\exists}f{\in}Hom_R(M,X/Y),\;Ker\;f/A{\ll}M/A}$. And Orhan and Keskin generalized projective modules via the class B(M, X). In this note we introduce X-local summands and X-hollow modules via the class B(M, X). Let R be a right perfect ring and let M be an X-lifting module. We prove that if every co-closed submodule of any projective module P contains Rad(P), then M has an indecomposable decomposition. This result is a generalization of Kuratomi and Chang's result [9, Theorem 3.4]. Let X be an R-module. We also prove that for an X-hollow module H such that every non-zero direct summand K of H with $K{\in}B$(H, X), if $H{\oplus}H$ has the internal exchange property, then H has a local endomorphism ring.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

CHARACTERIZATION OF PRIME SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A VALUATION DOMAIN

  • Mirzaei, Fatemeh;Nekooei, Reza
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • Let $F=R^{(n)}$ be a free R-module of finite rank $n{\geq}2$. In this paper, we characterize the prime submodules of F with at most n generators when R is a $Pr{\ddot{u}}fer$ domain. We also introduce the notion of prime matrix and we show that when R is a valuation domain, every finitely generated prime submodule of F with at least n generators is the row space of a prime matrix.

ESSENTIAL EXACT SEQUENCES

  • Akray, Ismael;Zebari, Amin
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.469-480
    • /
    • 2020
  • Let R be a commutative ring with identity and M a unital R-module. We give a new generalization of exact sequences called e-exact sequences. A sequence $0{\rightarrow}A{\longrightarrow[20]^f}B{\longrightarrow[20]^g}C{\rightarrow}0$ is said to be e-exact if f is monic, Imf ≤e Kerg and Img ≤e C. We modify many famous theorems including exact sequences to one includes e-exact sequences like 3 × 3 lemma, four and five lemmas. Next, we prove that for torsion-free module M, the contravariant functor Hom(-, M) is left e-exact and the covariant functor M ⊗ - is right e-exact. Finally, we define e-projective module and characterize it. We show that the direct sum of R-modules is e-projective module if and only if each summand is e-projective.

On Strongly Extending Modules

  • Atani, S. Ebrahimi;Khoramdel, M.;Hesari, S. Dolati Pish
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.237-247
    • /
    • 2014
  • The purpose of this paper is to introduce the concept of strongly extending modules which are particular subclass of the class of extending modules, and study some basic properties of this new class of modules. A module M is called strongly extending if each submodule of M is essential in a fully invariant direct summand of M. In this paper we examine the behavior of the class of strongly extending modules with respect to the preservation of this property in direct summands and direct sums and give some properties of these modules, for instance, strongly summand intersection property and weakly co-Hopfian property. Also such modules are characterized over commutative Dedekind domains.

Development of the Phase Controller for MMC STATCOM (MMC STATCOM용 Phase 제어기 개발)

  • Yeo, Sang-Min;Seo, Jae-Jin;Choi, Jong-Yun;Yang, Hang-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.414-415
    • /
    • 2015
  • 최근 대용량 전압형 컨버터 분야에서는 기존 전압형 컨버터에 비해 용량 증대, 고조파 저감 등이 용이한 Modular Multi-level Converter 토폴로지가 주요 관심사가 되고 있다. 이러한 새로운 컨버터 토폴로지는 대용량 컨버터가 요구되는 HVDC 기술을 시작으로 여러 분야에 적용되고 있으며, 전압형 컨버터를 사용하는 STATCOM에서도 이 토폴로지를 적용한 MMC STATCOM이 전력 시장에 등장하고 있다. MMC STATCOM을 제어하기 위한 제어 시스템은 기존 MMC HVDC와 유사하게 기능 및 제어 수준에 따라 계층적으로 구성된다. 이중 Phase 제어기는 실제 컨버터를 동작하기 위한 Valve Based Electronic (VBE)로써 MMC를 구성하는 각 submodule들이 어떻게 동작해야 하는지에 대한 지령을 생성하는 제어기이다. 본 논문에서는 당사에서 개발하고 있는 MMC STATCOM에 적용하기 위한 Phase 제어기를 소개하고 H/W 개발, F/W 개발 등에 대해 기술하였다.

  • PDF

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.