Bull. Korean Math. Soc. **52** (2015), No. 2, pp. 541–548 http://dx.doi.org/10.4134/BKMS.2015.52.2.541

# A NOTE ON w-NOETHERIAN RINGS

Shiqi Xing and Fanggui Wang

ABSTRACT. Let R be a commutative ring. An R-module M is called a w-Noetherian module if every submodule of M is of w-finite type. R is called a w-Noetherian ring if R as an R-module is a w-Noetherian module. In this paper, we present an exact version of the Eakin-Nagata Theorem on w-Noetherian rings. To do this, we prove the Formanek Theorem for w-Noetherian rings. Further, we point out by an example that the condition ( $\dagger$ ) in the Chung-Ha-Kim version of the Eakin-Nagata Theorem on SM domains is essential.

## 1. Introduction

Throughout the paper, all the rings are commutative rings with  $1 \neq 0$ .

Let  $R \subseteq T$  be an extension of rings. If T is a finitely generated R-module, it is well-known that if R is Noetherian, then so is T. In 1968, P. M. Eakin ([4]) and M. Nagata ([7]) independently proved the converse: If T is Noetherian, then R is also Noetherian. This theorem is usually called the Eakin-Nagata Theorem in commutative algebra. After the notion of strong Mori domains (SM domains for short) was introduced by F. G. Wang and R. L. McCasland (see [11] and [12]), many classical theorems on Noetherian rings have been generalized to SM domains, for example, Hilbert Basis Theorem ([12, Theorem 1.13]), Principal Ideal Theorem ([12, Corollary 1.11]), Krull-Akizuki Theorem ([12, Theorem 3.4]), Matijevic Theorem ([9, Theorem 1.5]), Mori-Nagata Theorem ([2, Theorem 3.1]), Matlis Theorem and Cartan-Eilenberg-Bass Theorem on injective modules ([6, Proposition 2.6] & [6, Theorem 2.9]). It is natural to ask how to present the Eakin-Nagata Theorem on SM domains. Let  $R \subseteq T$  be an extension of domains and let T as R-module be a w-finite type w-module. Recently, Chung, Ha and Kim proved in [3] that when  $R \subseteq T$  satisfies the condition (†) (i.e., if N is a co-semi-divisorial R-module, then  $\operatorname{Hom}_R(T, N)$  is a co-semi-divisorial T-module), R is also an SM domain if T is an SM domain. Naturally, we ask whether the statement on the Eakin-Nagata Theorem for

O2015Korean Mathematical Society

541

Received March 6, 2014; Revised May 8, 2014.

<sup>2010</sup> Mathematics Subject Classification. 13B02, 13A15, 13E99.

Key words and phrases. w-moudle, w-finite type, w-Noetherian module, w-Noetherian ring.

SM domains by Chung-Ha-Kim is exact and whether the condition (†) can be deleted.

It is worthy noting that the notions of w-modules and SM domains have been generalized to an arbitrary commutative ring, see [13, 15]. So it is also natural to ask what is the exact statement on the Eakin-Nagata Theorem for w-Noetherian rings. Let M as R-module be finitely generated and faithful. In his paper [5] Formanek proved that if M satisfies the ascending chain condition for submodules of M of the form of IM, where I is an ideal of R, then R is a Noetherian ring. In this paper, we first prove the Formanek Theorem for w-Noetherian rings. As a corollary, we obtain the exact form of the Eakin-Nagata Theorem for w-Noetherian rings.

To see the essence of the condition  $(\dagger)$  in the Chung-Ha-Kim version on the Eakin-Nagata Theorem, we give some equivalent characterizations on it, for commutative rings. We also post an example for which if the condition  $(\dagger)$  is deleted, that T is an SM domains does not imply that R is an SM domain.

Now, we recall some material of w-modules. Following [15], an ideal J of R is called a GV-ideal, denoted by  $J \in \mathrm{GV}(R)$ , if J is finitely generated and the natural homomorphism  $\phi: J \to \mathrm{Hom}_R(J, R)$  is an isomorphism. An R-module M is called GV-torsion-free if Jx = 0 with  $J \in \mathrm{GV}(R)$  and  $x \in M$  implies x = 0. M is called GV-torsion if there exists  $J \in \mathrm{GV}(R)$  such that Jx = 0 for any  $x \in M$ . GV-torsion-free and GV-torsion mean co-semi-divisrial and w-null respectively in [3]. For a GV-torsion-free module M, set

$$M_w = \{ x \in E(M) \mid Jx \subseteq M \text{ for some } J \in \mathrm{GV}(R) \},\$$

which is called the *w*-envelope of M, where E(M) is the injective hull of M. If  $M = M_w$ , then M is called a *w*-module (over R). In particular, if A is an ideal of R with  $A = A_w$ , then A is called a *w*-ideal of R. Let  $R \subseteq T$  be an extension of rings. As in [14], T is called *w*-linked over R if T as R-module is a *w*-module. When  $R \subseteq T$  is an extension of integral domains, the *w*-linked extension is said to be *t*-linked in a lot of literature.

Let  $f: A \to B$  be an *R*-homomorphism. Then, as in [10], f is called a *w*-epimorphism (resp., *w*-monomorphism and *w*-isomorphism) if  $f_P: A_P \to B_P$  is an epimorphism (resp., a monomorphism and an isomorphism) for any maximal *w*-ideal P of R. A sequence of modules and homomorphisms  $A \to B \to C$  is called *w*-exact sequence if the sequence  $A_P \xrightarrow{f_P} B_P \xrightarrow{g_P} C_P$  is exact for any maximal *w*-ideal P of R. An *R*-module M is said to be of *w*-finite type if there exists a *w*-exact sequence  $F \to M \to 0$ , where F is finitely generated free; equivalently, there is a finitely generated submodule N of M such that M/N is GV-torsion. And M is called a *w*-Notherian module if every submodule of M is of *w*-finite type. In particular, if R as R-module is a *w*-Noetherian module, then R is called a *w*-Notherian ring. If M is a *w*-module, then M is *w*-Noetherian if and only if M is an SM module; R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an sequence R is module if R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an SM module if R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an SM module if R is *w*-Noetherian if and only if R is an SM module if R is *w*-Noetherian if and only if R is an SM module; R is *w*-Noetherian if and only if R is an SM module if R is *w*-Noetherian if and only if R is an SM module if R is *w*-Noetherian if and only if R is an SM module if R is *w*-Noetherian if and only if R is an SM module if R is *w*-Noetherian if and only if R is an SM module if R is *w*-Noetherian if an

an SM domain. For unexplained terminologies and notations, we refer to [10], [14] and [15].

### 2. The main results

We start by the following observation for w-Noetherian rings.

**Theorem 2.1.** Let M be a GV-torsion-free w-Noetherian module of w-finite type. Set  $I = \operatorname{ann}(M)$ . Then R/I as an R-module is w-Notherian. In particular, if M is faithful, then R is a w-Notherian ring.

*Proof.* Since M is of w-finite type, there is a finitely generated submodule  $N = Rx_1 + \cdots + Rx_2$  such that M/N is GV-torsion. Define  $f : R \to M^n$  by  $f(r) = (rx_1, \ldots, rx_n)$  for  $r \in R$ . Then ker $(f) = \operatorname{ann}(N)$ .

Now we prove  $\operatorname{ann}(M) = \operatorname{ann}(N)$ . To do this, we show  $(\operatorname{ann}(M))_P = \operatorname{ann}(M_P)$  for all maximal *w*-ideal *P* of *R*. In fact, let  $r \in \operatorname{ann}(M)$ . Then rM = 0, whence  $\frac{r}{1}M_P = 0$ . Thus we have  $(\operatorname{ann}(M))_P \subseteq \operatorname{ann}(M_P)$ . On the other hand, if  $r \in R$  and  $s \notin P$  with  $\frac{r}{s}M_P = 0$ , then we have  $\frac{r}{s}N_P = 0$ . Since *N* is finitely generated, we have  $s_1rN = 0$  for some  $s_1 \notin P$ . For any  $x \in M$ , take a GV-ideal *J* with  $Jx \subseteq N$ . Then  $Js_1rx = 0$ . Because *M* is GV-torsion-free, we have  $s_1rx = 0$ . Hence  $s_1r \in \operatorname{ann}(M)$ , and therefore  $\operatorname{ann}(M_P) \subseteq (\operatorname{ann}(M))_P$ . Thus we get  $(\operatorname{ann}(M))_P = \operatorname{ann}(M_P)$ .

Since M is GV-torsion-free and  $M_w = N_w$ ,  $M_P = N_P$  by [15, Corollary 3.10]. Hence  $(\operatorname{ann}(M))_P = \operatorname{ann}(M_P) = \operatorname{ann}(N_P) = (\operatorname{ann}(N))_P$ . Noting that  $\operatorname{ann}(M)$  and  $\operatorname{ann}(N)$  are w-ideals, we have  $\operatorname{ann}(M) = \operatorname{ann}(N)$  by [15, Corollary 3.10]. Hence the induced map  $\overline{f} : R/I \to M^n$  is a monomorphism. So R/I is a w-Noetherian R-module by [15, Proposition 4.5].  $\Box$ 

Before we prove the Formanek Theorem for w-Noetherian rings, we need the following lemma.

**Lemma 2.2.** Let M be a GV-torsion-free R-module. Then M is w-Noetherian module if and only if  $M_w$  is a w-Noetherian module.

*Proof.* Note that the inclusion map  $M \to M_w$  is a *w*-isomorphism. Apply [10, Proposition 3.5].

Now, we can prove the Formanek theorem for w-Noetherian rings.

**Theorem 2.3.** Let M be a faithful w-module of w-finite type. Then M has ACC of submodules of M of the form  $(IM)_w$  if and only if R is a w-Noetherian ring, where I is an ideal of R.

*Proof.* Suppose R is a *w*-Noetherian ring. Certainly M is a *w*-Noetherian module by [10, Theorem 3.6] since M is of *w*-finite type. Hence M has ACC on submodules of M of the form  $(IM)_w$ .

For the converse, by Theorem 2.1, it is sufficient to show that M is w-Noetherian. If not, set

 $\Omega = \{ (IM)_w \mid I \text{ is an ideal of } R \text{ and } M/(IM)_w \text{ is not } w\text{-Noetherian} \}.$ 

By hypothesis  $\Omega$  has a maximal element  $(BM)_w$ . Set

 $S = \{A \mid A \text{ is an ideal of } R \text{ with } (AM)_w = (BM)_w \}.$ 

Let  $\{A_i\}$  be a chain in S. Then  $A = \bigcup_i A_i$  is an ideal of R. It is clear that  $(BM)_w = (A_iM)_w \subseteq (AM)_w$ . On the other hand, if  $y \in (AM)_w$ , then there exists  $J \in \mathrm{GV}(R)$  such that  $Jy \subseteq AM$ . Write  $J = (b_1, \ldots, b_n)$ . Then, for each i, there exists some  $A_{k_i}$  such that  $b_i y \subseteq A_{k_i} M$ . Hence, there exists some  $A_k$  such that  $Jy \subseteq A_k M$ . Therefore  $y \in (A_k M)_w = (BM)_w$ . Thus  $(AM)_w = (BM)_w$  and hence A is an upper bound of the chain  $\{A_i\}$ . It follows that S has a maximal element in  $\Omega$ , say C.

If  $I \supseteq C$ , then  $(IM)_w \neq (CM)_w = (BM)_w$ . So  $(IM)_w \supseteq (BM)_w$ , which implies that  $M/(IM)_w$  is a *w*-Noetherian module. Note that  $M/(IM)_w$  is *w*-Notherian if and only if  $(M/(IM)_w)_w$  is *w*-Noetherian by Lemma 2.2. By replacing  $(M/(CM)_w)_w$  by M, we can assume that M is not *w*-Noetherian but  $M/(IM)_w$  is *w*-Noetherian for any nonzero ideal I of R.

Set  $S' = \{N \mid N \text{ is a } w$ -submodule of M and M/N is faithful}. Since M is faithful,  $0 \in S'$ , and hence S' is not empty. Let  $\{N_i\}$  be a chain in S' and put  $N = \bigcup N_i$ . Then N is a w-submodule of M by [15, Proposition 2.6]. We conclude that M/N is faithful. In fact, since M is of w-finite type, there exists a finitely generated submodule F such that  $F_w = M$ . Write  $F = Rx_1 + \cdots + Rx_n$ . If  $\operatorname{ann}(M/N) \neq 0$ , take  $0 \neq a \in \operatorname{ann}(M/N)$ . Then  $ax_i \in N$ . Hence there exists some  $N_k$  such that  $ax_i \in N_k$  for each i. Thus  $aF \subseteq N_k$ , and hence  $aM = aF_w \subseteq (aF)_w \subseteq (N_k)_w = N_k$ . Consequently,  $a \in \operatorname{ann}(M/N_k) = 0$ , a contradiction. Hence M/N is faithful and N is the upper bound of  $\{N_i\}$ . By Zorn's Lemma, S' has a maximal element, say E. Since M is of w-finite type, it follows that M/E is also a w-finite type GV-torsion-free module by [10, Proposition 1.3] and [15, Theorem 2.7]. Now we prove that M/E is a w-Noetherian module. In this case we obtain that R is a w-Noetherian ring by Theorem 2.1.

Assume by contradiction that M/E is not *w*-Noetherian. Then there exists a non-finite type *w*-submodule N of M by [15, Proposition 4.2]. By replacing  $(M/E)_w$  by M we can assume that (a) M is not a *w*-Noetherian module; (b)  $M/(IM)_w$  is a *w*-Noetherian module for any non-zero ideal I of R; (c) M/Nis not faithful for each non-zero *w*-submodule N of M.

Since M is not w-Noetherian, there is a non-finite type w-submodule N of M. By (c), take  $0 \neq a \in R$  with  $aM \subseteq N$ . We conclude that aM is of w-finite type. (Note that we do not have  $(aM)_w = aM_w$  for commutative rings in general.) In fact, if  $x \in M$ , then  $Jx \subseteq F$  for some  $J \in \mathrm{GV}(R)$ . Hence  $Jax \subseteq aF$ . So  $ax \subseteq (aF)_w$ . Thus  $aM \subseteq (aF)_w$ , whence  $(aM)_w = (aF)_w$ . It follows that  $(aM)_w$  is of w-finite type. Also, since  $M/(aM)_w$  is a w-Noetherian module by (b), it follows that  $N/(aM)_w$  is of w-finite type. Hence we see from the exact sequence  $0 \to (aM)_w \to N \to N/(aM)_w \to 0$  that N is of w-finite type by [10, Proposition 1.3], a contradiction.

Let  $R \subseteq T$  be a *w*-linked extension of rings. For any ideal A of T, denote by  $A_W$  the *w*-envelope of A as a T-module, which is different from the *w*-envelope  $A_w$  of A as an R-module. If  $A_w = A$ , then we say that A is a  $w_R$ -ideal of T. T is said to be a  $w_R$ -Noetherian ring if T has the ascending chain condition of  $w_R$ -ideals of T. When  $R \subseteq T$  is a *w*-linked extension of integral domains, then  $w_R$  is a finite character star-operation on T. Now we record the following easy facts and omit their proofs.

**Lemma 2.4.** Let  $R \subseteq T$  be a w-linked extension of rings. Then the following statements hold.

- (i) For any ideal A of T,  $A_w \subseteq A_W$ .
- (ii) If A is a w-ideal of T, then A is a  $w_R$ -ideal of T.
- (ii) If A is a  $w_R$ -ideal of T, then  $A \cap R$  is a w-ideal of R.
- (iv) For any proper  $w_R$ -ideal A of T, there is a maximal  $w_R$ -ideal P with  $A \subseteq P$ . Therefore, T has certainly a maximal  $w_R$ -ideal.
- (v) If T is a  $w_R$ -Noetherian ring, then T is w-Noetherian.

Now, we can present the exact version of the Eakin-Nagata Theorem for w-Noetherian rings by making use of the Formanek Theorem for w-Noetherian rings.

**Theorem 2.5.** Let  $R \subseteq T$  be a w-linked extension of rings in which T as an R-module is of w-finite type. Then R is a w-Noetherian ring if and only if T is a  $w_R$ -Noetherian ring.

Proof. Suppose R is w-Noetherian. Since T is a w-finite type w-module over R, T is a w-Noetherian R-module by [13, Lemma 3.5]. Hence T is a  $w_R$ -Noetherian ring. Conversely, suppose T is a  $w_R$ -Noetherian ring and I is an ideal of R. Then  $(IT)_w$  is a  $w_R$ -ideal of T. Note that T is certainly a faithful R-module. Since T has ACC for  $w_R$ -ideals of T of the form  $(IT)_w$ , it follows that R is w-Noetherian by Theorem 2.3.

**Corollary 2.6.** Let  $R \subseteq T$  be a w-linked extension of rings in which T as an R-module is of w-finite type. If R is a w-Noetherian ring, then T is a w-Noetherian ring.

Recall from [3] the Chung-Ha-Kim version of Eakin-Nagata Theorem for SM domains:

Let  $R \subseteq T$  be an *w*-linked extension of integral domains in which T is a *w*-finite type R-module. Assume that  $R \subseteq T$  satisfies (†). If T is an SM domain, then R is also an SM domain.

To explain the condition (†) in [3], the other condition is posted as follows: ( $\sharp$ ): For each prime ideal Q of T with  $Q \bigcap R \neq 0$ ,  $(Q \bigcap R)_t \subseteq D$  implies  $Q_t \subseteq T$ .

It was proved that the conditions  $(\dagger)$  and  $(\sharp)$  are equivalent in [3] when  $R \subseteq T$  is a *w*-linked extension of integral domains and *T* is of *w*-finite type

over R. To clarify what these conditions mean for extensions of commutative rings, we give the following theorem.

**Theorem 2.7.** Let  $R \subseteq T$  be a w-linked extension of rings. Then the following statements is equivalent:

(i) Each maximal  $w_R$ -ideal of T is a maximal w-ideal of T.

(ii) If  $J \in GV(T)$ , then there exists  $J' \in GV(R)$  such that  $J' \subseteq J$ .

(iii) Each  $w_R$ -ideal of T is a w-ideal of T.

If R and T are integral domains, the conditions above are equivalent to the following condition:

(iv) For each prime ideal Q of T,  $(Q \cap R)_t \subseteq R$  implies  $Q_t \subseteq T$ , that is, the condition  $(\sharp)$  holds.

Also, if T is of w-finite type over R, the conditions above are equivalent to the following condition:

(v) If N is a GV-torsion-free R-module, then  $\operatorname{Hom}_R(T, N)$  is a GV-torsion-free T-module, that is, the condition (†) holds.

*Proof.* (i) $\Rightarrow$ (ii). Let  $J \in \mathrm{GV}(T)$ . If  $J_w \neq T$ , then there exists a maximal  $w_R$ -ideal Q of T such that  $J_w \subseteq Q$  by Lemma 2.4. Also, it means that Q is a maximal w-ideal of T by hypothesis. Since  $J \subseteq J_w \subseteq Q$  and  $J_W = T$ , it means that Q = T, a contradiction. Hence,  $J_w = T$ , and hence there is  $J' \in \mathrm{GV}(R)$  such that  $J' = J' \cdot 1 \subseteq J$ .

(ii) $\Rightarrow$ (iii). Suppose A is a  $w_R$ -ideal of T. If  $Jx \subseteq A$  with  $J \in \mathrm{GV}(T)$  and  $x \in T$ , take  $J' \in \mathrm{GV}(R)$  such that  $J' \subseteq J$ . Hence  $J'x \subseteq A$ . Since A is a  $w_R$ -ideal of T, it implies that  $x \in A_w = A$ . Hence A is a w-ideal of T.

(iii) $\Rightarrow$ (i). It is trivial.

Now we assume that  $R \subseteq T$  is a *w*-linked extension of integral domains.

(i) $\Rightarrow$ (iv). Let Q be a prime ideal of T such that  $(Q \cap R)_t \neq R$ . Then there exists a maximal t-ideal P of R such that  $Q \cap R \subseteq (Q \cap R)_t \subseteq P \neq R$ . Note that P is also a maximal w-ideal of R by [1, Cororally 2.17] and  $Q \cap R$  is a w-ideal of R by [12, Proposition 1.1]. Hence Q is a  $w_R$ -ideal of T by [14, Theorem 3.7]. It follows that there exists a maximal  $w_R$ -ideal M of T such that  $Q \subseteq M$ . Since M is a maximal w-ideal of T by hypothesis, M is also a maximal t-ideal of T. Hence  $Q_t \subseteq M_t = M \neq T$ .

(iv) $\Rightarrow$ (i). Let Q be a maximal  $w_R$ -ideal of T. Then  $Q \cap R$  is a w-ideal of R by Lemma 2.4. Hence there exists a maximal w-ideal P of R such that  $Q \cap R \subseteq P$ . Noting that P is a maximal t-ideal of R by [1, Corollary 2.17], we have  $(Q \cap R)_t \subseteq P \neq R$ . It means that  $Q_t \neq T$  by hypothesis. Hence there exists a maximal t-ideal Q' of T such that  $Q \subseteq Q_t \subseteq Q'$ . Noting that Q' is a w-ideal of T and hence a  $w_R$ -ideal of T, we have Q = Q' by the maximality of Q. It follows that Q is a maximal w-ideal of T.

 $(vi) \Leftrightarrow (v)$ . See [3, Proposition 2.7].

**Corollary 2.8.** Let  $R \subseteq T$  be a w-linked extension of rings in which T is of w-finite type over R. Assume that T satisfies one of the former three equivalent

546

conditions in Theorem 2.7. Then R is a w-Noetherian ring if and only if T is a w-Noetherian ring.

**Corollary 2.9.** Let  $R \subseteq T$  be a w-linked extension of integral domains in which T is of w-finite type over R. Assume that T satisfies one of the equivalent conditions in Theorem 2.7. Then R is an SM domain if and only if T is an SM domain.

Let  $R \subseteq T$  be a *w*-linked extension of domains in which T as an R-module is of *w*-finite type. Now we will give an example to show that the Chung-Ha-Kim version of Eakin-Nagata Theorem does not hold if the condition ( $\dagger$ ) is deleted. That is when T is an SM domain, R does not have to be an SM domain.

Let



be a commutative diagram of rings and homomorphisms. If R, D and T are domains, F is a field, and R is a proper subring of T, then the commutative diagram is called a Milnor square. Thus there is a maximal ideal M of T such that  $T/M \cong F$ . In particular, if R = D + M, then this Milnor square is called a D + M construction. For a Milnor square RDTF, we usually write F = T/M and regard that M is a common ideal of T and R with D = R/M.

**Lemma 2.10.** Let RDTF be a Milnor square. If D and F are fields and  $[F:D] < \infty$ , then T as an R-module is finitely generated.

Proof. Let  $\pi: T \to T/M = F$  be the natural map. Since  $n := [F:D] < \infty$ , there are elements  $x_1 = 1, x_2, \ldots, x_n \in T$  such that  $\pi(x_1), \pi(x_2), \ldots, \pi(x_n)$  is a basis of F over D. Set  $A = Rx_1 + \cdots + Rx_n$ . Then A is a fractional ideal of R and  $A \subseteq T$ . Since  $1 \in A$ , it means that AT = T. So  $M = MT = MAT = MA \subseteq A$ . Let  $x \in T$ . Then  $\pi(x) = \pi(r_1)\pi(x_1) + \cdots + \pi(r_n)\pi(x_n)$  for  $r_i \in R$ , i = $1, 2, \ldots, n$ . Hence  $x - (r_1x_1 + \cdots + r_nx_n) \in M \subseteq A$ . Thus we have  $x \in A$ . Therefore A = T, that is, T as an R-module is finitely generated.  $\Box$ 

**Example 2.11.** Let  $D \subseteq F$  be an extension of fields with  $[F : D] < \infty$ . Let  $T = F[X_1, \ldots, X_n, \ldots]$  be the polynomial ring over F with countably infinitely many indeterminates. Construct the Milnor square as follows:



Then T is w-linked over R and T is finitely generated over R by Lemma 2.10. By [8, Theorem 4.7] T is an SM domain. Let  $M = \sum_{i=1}^{\infty} TX_i$ . Then M is a maximal ideal of T and  $T_M$  is not Noetherian. By [8, Proposition 3.7], R is not

an SM domain. Note that M is a maximal  $w_R$ -ideal of T, but not a maximal w-ideal of T.

Acknowledgements. The authors would like to thank the referee for a careful reading and relevant comments. This work is supported by National Natural Science Foundation of China(Grant No. 11171240).

#### References

- D. D. Anderson and S. J. Cook, Two star operations and their induced lattices, Comm. Algebra 29 (2000), no. 5, 2461–2475.
- [2] G. W. Chang and M. Zafrullah, The w-integral closure of integral domains, J. Algebra 295 (2006), no. 1, 195–210.
- [3] W. Chung, J. Ha, and H. Kim, Some remarks on strong Mori domains, Houston J. Math. 38 (2012), no. 4, 1051–1059.
- [4] P. M. Eakin, The converse to a well known theorem on Noetherian rings, Math. Ann. 177 (1968), 278–282.
- [5] E. Formanek, Die stätze von Bertini für lokale Ringe, Math. Ann. 229 (1977), 97-111.
- [6] H. Kim, E. S. Kim, and Y. S. Park, *Injective modules over strong Mori domains*, Houston J. Math. **34** (2008), no. 2, 349–360.
- [7] M. Nagata, A type of subrings of a Noetherian ring, J. Math. Kyoto Univ. 8 (1968), 465–467.
- [8] M. H. Park, Groups rings and semigroup rings over strong Mori domains, J. Pure Appl. Algebra 163 (2001), no. 3, 301–318.
- [9] \_\_\_\_\_, On overrings of Strong Mori domains, J. Pure Appl. Algebra 172 (2002), no. 1, 79–85.
- [10] F. G. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1–9.
- [11] F. G. Wang, and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285–1306.
- [12] \_\_\_\_\_, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155–165.
- [13] F. G. Wang, J. Zhang, Injective modules over w-Noetherian rings, Acta math. Sinica (Chin. Ser.) 53 (2010), no. 6, 1119–1130.
- [14] L. Xi, F. G. Wang, and Y. Tian, On w-linked overrings, J. Math. Res. Exposition 31 (2011), 337–346.
- [15] H. Y. Yin, F. G. Wang, X. S. Zhu, and Y. H. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 146–151.

#### Shiqi Xing

College of Mathematics and Software Science Sichuan Normal University Chengdu 610068, P. R. China *E-mail address:* sqxing@yeah.net

FANGGUI WANG

College of Mathematics and Software Science Sichuan Normal University Chengdu 610068, P. R. China *E-mail address*: wangfg2004@163.com