Bull. Korean Math. Soc. 52 (2015), No. 2, pp. 541-548
http://dx.doi.org/10.4134/BKMS.2015.52.2.541

A NOTE ON w-NOETHERIAN RINGS

SHIQI XING AND FANGGUI WANG

ABSTRACT. Let R be a commutative ring. An R-module M is called a
w-Noetherian module if every submodule of M is of w-finite type. R is
called a w-Noetherian ring if R as an R-module is a w-Noetherian module.
In this paper, we present an exact version of the Eakin-Nagata Theorem
on w-Noetherian rings. To do this, we prove the Formanek Theorem
for w-Noetherian rings. Further, we point out by an example that the
condition (1) in the Chung-Ha-Kim version of the Eakin-Nagata Theorem
on SM domains is essential.

1. Introduction

Throughout the paper, all the rings are commutative rings with 1 = 0.

Let R C T be an extension of rings. If 7" is a finitely generated R-module, it
is well-known that if R is Noetherian, then so is 7. In 1968, P. M. Eakin ([4])
and M. Nagata ([7]) independently proved the converse: If T is Noetherian,
then R is also Noetherian. This theorem is usually called the Eakin-Nagata
Theorem in commutative algebra. After the notion of strong Mori domains (SM
domains for short) was introduced by F. G. Wang and R. L. McCasland (see [11]
and [12]), many classical theorems on Noetherian rings have been generalized
to SM domains, for example, Hilbert Basis Theorem ([12, Theorem 1.13]),
Principal Ideal Theorem ([12, Corollary 1.11]), Krull-Akizuki Theorem ([12,
Theorem 3.4]), Matijevic Theorem ([9, Theorem 1.5]), Mori-Nagata Theorem
([2, Theorem 3.1]), Matlis Theorem and Cartan-Eilenberg-Bass Theorem on
injective modules ([6, Proposition 2.6] & [6, Theorem 2.9]). It is natural to
ask how to present the Eakin-Nagata Theorem on SM domains. Let R C T be
an extension of domains and let T' as R-module be a w-finite type w-module.
Recently, Chung, Ha and Kim proved in [3] that when R C T satisfies the
condition (}) (i.e., if N is a co-semi-divisorial R-module, then Hompg(T, N) is
a co-semi-divisorial T-module), R is also an SM domain if T is an SM domain.
Naturally, we ask whether the statement on the Eakin-Nagata Theorem for
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SM domains by Chung-Ha-Kim is exact and whether the condition (}) can be
deleted.

It is worthy noting that the notions of w-modules and SM domains have
been generalized to an arbitrary commutative ring, see [13, 15]. So it is also
natural to ask what is the exact statement on the Eakin-Nagata Theorem for
w-Noetherian rings. Let M as R-module be finitely generated and faithful. In
his paper [5] Formanek proved that if M satisfies the ascending chain condition
for submodules of M of the form of IM, where I is an ideal of R, then R is
a Noetherian ring. In this paper, we first prove the Formanek Theorem for w-
Noetherian rings. As a corollary, we obtain the exact form of the Eakin-Nagata
Theorem for w-Noetherian rings.

To see the essence of the condition (f) in the Chung-Ha-Kim version on the
Eakin-Nagata Theorem, we give some equivalent characterizations on it, for
commutative rings. We also post an example for which if the condition (1) is
deleted, that T" is an SM domains does not imply that R is an SM domain.

Now, we recall some material of w-modules. Following [15], an ideal J of R
is called a GV-ideal, denoted by J € GV(R), if J is finitely generated and the
natural homomorphism ¢ : J — Hompg(J, R) is an isomorphism. An R-module
M is called GV-torsion-free if Jx = 0 with J € GV(R) and € M implies
x=0. M is called GV-torsion if there exists J € GV(R) such that Jx = 0 for
any ¢ € M. GV-torsion-free and GV-torsion mean co-semi-divisrial and w-null
respectively in [3]. For a GV-torsion-free module M, set

M, ={x € E(M)|Jx C M for some J € GV(R)},

which is called the w-envelope of M, where E(M) is the injective hull of M.
If M = M, then M is called a w-module (over R). In particular, if A is an
ideal of R with A = A,,, then A is called a w-ideal of R. Let R C T be an
extension of rings. As in [14], T is called w-linked over R if T' as R-module is
a w-module. When R C T is an extension of integral domains, the w-linked
extension is said to be t-linked in a lot of literature.

Let f : A — B be an R-homomorphism. Then, as in [10], f is called a w-
epimorphism (resp., w-monomorphism and w-isomorphism) if fp : Ap — Bp is
an epimorphism (resp., a monomorphism and an isomorphism) for any maximal
w-ideal P of R. A sequence of modules and homomorphisms A — B — C'is

called w-ezact sequence if the sequence Ap ﬁ) Bp AN Cp is exact for any
maximal w-ideal P of R. An R-module M is said to be of w-finite type if there
exists a w-exact sequence F' — M — 0, where F' is finitely generated free;
equivalently, there is a finitely generated submodule N of M such that M/N is
GV-torsion. And M is called a w-Notherian module if every submodule of M is
of w-finite type. In particular, if R as R-module is a w-Noetherian module, then
R is called a w-Notherian ring. If M is a w-module, then M is w-Noetherian if
and only if M satisfies the ascending chain condition for w-submodules of M.
Certainly, if R is a domain, then a torsion-free w-modules M is w-Notherian
module if and only if M is an SM module; R is w-Noetherian if and only if R is
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an SM domain. For unexplained terminologies and notations, we refer to [10],
[14] and [15].

2. The main results

We start by the following observation for w-Noetherian rings.

Theorem 2.1. Let M be a GV-torsion-free w-Noetherian module of w-finite
type. Set I = ann(M). Then R/I as an R-module is w-Notherian. In particu-
lar, if M is faithful, then R is a w-Notherian ring.

Proof. Since M is of w-finite type, there is a finitely generated submodule
N = Rx; + -+ + Rxo such that M/N is GV-torsion. Define f : R — M™ by
f(r) = (rz1,...,rzy) for r € R. Then ker(f) = ann(N).

Now we prove ann(M) = ann(N). To do this, we show (ann(M))p =
ann(Mp) for all maximal w-ideal P of R. In fact, let r € ann(M). Then
rM = 0, whence {Mp = 0. Thus we have (ann(M))p C ann(Mp). On the
other hand, if r € R and s ¢ P with £ Mp = 0, then we have ZNp = 0. Since N
is finitely generated, we have s;rIN = 0 for some s; € P. For any x € M, take a
GV-ideal J with Jx C N. Then Jsyrz = 0. Because M is GV-torsion-free, we
have syrz = 0. Hence s;r € ann(M), and therefore ann(Mp) C (ann(M))p.
Thus we get (ann(M))p = ann(Mp).

Since M is GV-torsion-free and M,, = N,,, Mp = Np by [15, Corollary
3.10]. Hence (ann(M))p = ann(Mp) = ann(Np) = (ann(N))p. Noting that
ann(M) and ann(N) are w-ideals, we have ann(M) = ann(N) by [15, Corollary
3.10]. Hence the induced map f : R/I — M™ is a monomorphism. So R/I is
a w-Noetherian R-module by [15, Proposition 4.5]. O

Before we prove the Formanek Theorem for w-Noetherian rings, we need the
following lemma.

Lemma 2.2. Let M be a GV -torsion-free R-module. Then M is w-Noetherian
module if and only if M, is a w-Noetherian module.

Proof. Note that the inclusion map M — M, is a w-isomorphism. Apply [10,
Proposition 3.5]. O

Now, we can prove the Formanek theorem for w-Noetherian rings.

Theorem 2.3. Let M be a faithful w-module of w-finite type. Then M has
ACC of submodules of M of the form (IM),, if and only if R is a w-Noetherian

ring, where I is an ideal of R.

Proof. Suppose R is a w-Noetherian ring. Certainly M is a w-Noetherian
module by [10, Theorem 3.6] since M is of w-finite type. Hence M has ACC
on submodules of M of the form (IM),,.

For the converse, by Theorem 2.1, it is sufficient to show that M is w-
Noetherian. If not, set

Q={(IM)y|Iis an ideal of R and M/(IM),, is not w-Noetherian}.
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By hypothesis €2 has a maximal element (BM),,. Set
S ={A|Ais an ideal of R with (AM),, = (BM),}.

Let {A;} be a chain in S. Then A = |J, A; is an ideal of R. It is clear
that (BM),, = (A;M),, C (AM),,. On the other hand, if y € (AM),,, then
there exists J € GV(R) such that Jy C AM. Write J = (b1,...,b,). Then,
for each 4, there exists some Aj, such that b,y C A, M. Hence, there exists
some Ay such that Jy C ApyM. Therefore y € (AxM), = (BM),. Thus
(AM),, = (BM),, and hence A is an upper bound of the chain {A4;}. It follows
that S has a maximal element in €, say C.

If I D C, then (IM)y # (CM)y = (BM)y. So (IM)y 2 (BM),, which
implies that M/(IM), is a w-Noetherian module. Note that M/(IM), is
w-Notherian if and only if (M/(IM)y)w is w-Noetherian by Lemma 2.2. By
replacing (M /(CM).)w by M, we can assume that M is not w-Noetherian but
M/(IM),, is w-Noetherian for any nonzero ideal I of R.

Set S’ = {N|N is a w-submodule of M and M/N is faithful}. Since M is
faithful, 0 € S’, and hence S’ is not empty. Let {N;} be a chain in S’ and
put N = JN;. Then N is a w-submodule of M by [15, Proposition 2.6]. We
conclude that M /N is faithful. In fact, since M is of w-finite type, there exists a
finitely generated submodule F such that Fy, = M. Write F' = Rx1+- - -+ Rxy,.
If ann(M/N) # 0, take 0 # a € ann(M/N). Then az; € N. Hence there
exists some Nj such that ax; € Nj for each i. Thus aF C Ng, and hence
aM = aF, C (aF)y € (Ng)w = Ng. Consequently, a € ann(M/Ng) = 0,
a contradiction. Hence M/N is faithful and N is the upper bound of {N,}.
By Zorn’s Lemma, S’ has a maximal element, say E. Since M is of w-finite
type, it follows that M/FE is also a w-finite type GV-torsion-free module by
[10, Proposition 1.3] and [15, Theorem 2.7]. Now we prove that M/F is a
w-Noetherian module. In this case we obtain that R is a w-Noetherian ring by
Theorem 2.1.

Assume by contradiction that M/E is not w-Noetherian. Then there exists
a non-finite type w-submodule N of M by [15, Proposition 4.2]. By replacing
(M/E), by M we can assume that (a) M is not a w-Noetherian module; (b)
M/(IM),, is a w-Noetherian module for any non-zero ideal I of R; (¢) M/N
is not faithful for each non-zero w-submodule N of M.

Since M is not w-Noetherian, there is a non-finite type w-submodule NV of
M. By (c), take 0 # a € R with aM C N. We conclude that aM is of w-
finite type. (Note that we do not have (aM),, = aM,, for commutative rings
in general.) In fact, if € M, then Jor C F for some J € GV(R). Hence
Jaxr C aF. So ax C (aF)y. Thus aM C (aF),, whence (aM)y, = (aF)y. It
follows that (aM),, is of w-finite type. Also, since M/(aM),, is a w-Noetherian
module by (b), it follows that N/(aM), is of w-finite type. Hence we see from
the exact sequence 0 — (aM),, = N — N/(aM),, — 0 that N is of w-finite
type by [10, Proposition 1.3], a contradiction. O
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Let R C T be a w-linked extension of rings. For any ideal A of T', denote by
Aw the w-envelope of A as a T-module, which is different from the w-envelope
A, of A as an R-module. If A, = A, then we say that A is a wg-ideal of T.
T is said to be a wr-Noetherian ring if 7" has the ascending chain condition of
wp-ideals of T. When R C T is a w-linked extension of integral domains, then
wp is a finite character star-operation on 7T'. Now we record the following easy
facts and omit their proofs.

Lemma 2.4. Let R C T be a w-linked extension of rings. Then the following
statements hold.
(i) For any ideal A of T, A, C Aw.

(ii) If A is a w-ideal of T, then A is a wr-ideal of T.
(ii) If A is a wr-ideal of T, then A(\ R is a w-ideal of R.

) For any proper wg-ideal A of T, there is a mazimal wr-ideal P with
A C P. Therefore, T has certainly a mazimal wg-ideal.
(v) If T is a wr-Noetherian ring, then T is w-Noetherian.

Now, we can present the exact version of the Eakin-Nagata Theorem for
w-Noetherian rings by making use of the Formanek Theorem for w-Noetherian
rings.

Theorem 2.5. Let R C T be a w-linked extension of rings in which T as an
R-module is of w-finite type. Then R is a w-Noetherian ring if and only if T
is a wr-Noetherian ring.

Proof. Suppose R is w-Noetherian. Since 7T is a w-finite type w-module over R,
T is a w-Noetherian R-module by [13, Lemma 3.5]. Hence T is a wr-Notherian
ring. Conversely, suppose T is a wgr-Noetherian ring and [ is an ideal of R.
Then (IT),, is a wr-ideal of T. Note that T is certainly a faithful R-module.
Since T has ACC for wg-ideals of T of the form (IT),, it follows that R is
w-Noetherian by Theorem 2.3. O

Corollary 2.6. Let R C T be a w-linked extension of rings in which T as
an R-module is of w-finite type. If R is a w-Noetherian ring, then T is a
w-Noetherian ring.

Recall from [3] the Chung-Ha-Kim version of Eakin-Nagata Theorem for SM
domains:

Let R C T be an w-linked extension of integral domains in which T is a w-
finite type R-module. Assume that R C T satisfies (). If T is an SM domain,
then R is also an SM domain.

To explain the condition (}) in [3], the other condition is posted as follows:

(8): For each prime ideal @ of T with QR # 0, (Q(R): € D implies
QT

It was proved that the conditions () and (f) are equivalent in [3] when
R C T is a w-linked extension of integral domains and T is of w-finite type
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over R. To clarify what these conditions mean for extensions of commutative
rings, we give the following theorem.

Theorem 2.7. Let R C T be a w-linked extension of rings. Then the following
statements is equivalent:

(i) Each mazimal wr-ideal of T is a maximal w-ideal of T'.

(ii) If J € GV(T), then there exists J' € GV(R) such that J' C J.

(iil) Fach wg-ideal of T is a w-ideal of T.

If R and T are integral domains, the conditions above are equivalent to the
following condition:

(iv) For each prime ideal Q of T, (Q (N R): € R implies Q¢ C T, that is, the
condition () holds.

Also, if T is of w-finite type over R, the conditions above are equivalent to
the following condition:

(v) If N is a GV-torsion-free R-module, then Homp (T, N) is a GV-torsion-
free T-module, that is, the condition (1) holds.

Proof. (i)=(ii). Let J € GV(T). If J, # T, then there exists a maximal
wg-ideal @ of T such that J,, C @ by Lemma 2.4. Also, it means that @ is a
maximal w-ideal of T' by hypothesis. Since J C J,, C Q and Jy = T, it means
that @ = T, a contradiction. Hence, J,, = T, and hence there is J' € GV(R)
such that J' =J' -1 C J.

(ii)=-(iii). Suppose A is a wgr-ideal of T. If Jo C A with J € GV(T) and
x € T, take J' € GV(R) such that J' C J. Hence J'z C A. Since A is a
wg-ideal of T', it implies that z € A,, = A. Hence A is a w-ideal of T'.

(iii)=>(i). It is trivial.

Now we assume that R C T is a w-linked extension of integral domains.

(i)=(iv). Let @ be a prime ideal of T such that (Q [\ R); # R. Then there
exists a maximal t-ideal P of R such that QR C (Q(R): C P # R. Note
that P is also a maximal w-ideal of R by [1, Cororally 2.17] and Q (R is a w-
ideal of R by [12, Proposition 1.1]. Hence @ is a wg-ideal of T' by [14, Theorem
3.7]. It follows that there exists a maximal wr-ideal M of T such that Q@ C M.
Since M is a maximal w-ideal of T' by hypothesis, M is also a maximal ¢-ideal
of T. Hence Q: C My =M #T.

(iv)=(i). Let @ be a maximal wg-ideal of T. Then QR is a w-ideal
of R by Lemma 2.4. Hence there exists a maximal w-ideal P of R such that
QR C P. Noting that P is a maximal ¢-ideal of R by [1, Corollary 2.17], we
have (Q(R): € P # R. It means that QQ; # T by hypothesis. Hence there
exists a maximal t-ideal Q" of T such that Q C Q; C @Q'. Noting that Q' is a
w-ideal of T and hence a wgr-ideal of T, we have @Q = Q' by the maximality of
Q. It follows that @ is a maximal w-ideal of T'.

(vi)&(v). See [3, Proposition 2.7]. O

Corollary 2.8. Let R C T be a w-linked extension of rings in which T is of
w-finite type over R. Assume that T satisfies one of the former three equivalent
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conditions in Theorem 2.7. Then R is a w-Noetherian ring if and only if T is
a w-Noetherian ring.

Corollary 2.9. Let R C T be a w-linked extension of integral domains in
which T is of w-finite type over R. Assume that T satisfies one of the equivalent
conditions in Theorem 2.7. Then R is an SM domain if and only if T is an
SM domain.

Let R C T be a w-linked extension of domains in which 7" as an R-module is
of w-finite type. Now we will give an example to show that the Chung-Ha-Kim
version of Eakin-Nagata Theorem does not hold if the condition (}) is deleted.
That is when T is an SM domain, R does not have to be an SM domain.

Let

R T

Voo

D——F

be a commutative diagram of rings and homomorphisms. If R, D and T are
domains, F is a field, and R is a proper subring of 7', then the commutative
diagram is called a Milnor square. Thus there is a maximal ideal M of T" such
that T/M = F. In particular, if R = D + M, then this Milnor square is called
a D+ M construction. For a Milnor square RDTF, we usually write F' =T /M
and regard that M is a common ideal of T and R with D = R/M.

Lemma 2.10. Let RDTF be a Milnor square. If D and F are fields and
[F: D] < oo, then T as an R-module is finitely generated.

Proof. Let w : T — T/M = F be the natural map. Since n := [F : D] < oo,
there are elements 1 = 1,3, ..., @, € T such that w(z1), 7(z2),...,7(zy) is a
basis of F'over D. Set A = Rx1+---+Rx,. Then A is a fractional ideal of R and
ACT. Since 1l € A, it means that AT =T. SoM = MT = MAT = MA C A.

Let z € T. Then w(x) = w(ri)m(z1) + - + w(ry)mw(xy,) for r; € R, i =
1,2,...,n. Hence z — (riz1 + -+ rpx,) € M C A. Thus we have z € A.
Therefore A =T, that is, T' as an R-module is finitely generated. (]

Example 2.11. Let D C F be an extension of fields with [F' : D] < co. Let
T = F[X1,...,Xp,...] be the polynomial ring over F with countably infinitely
many indeterminates. Construct the Milnor square as follows:

R T

b

D—F

Then T is w-linked over R and T is finitely generated over R by Lemma 2.10.
By [8, Theorem 4.7] T is an SM domain. Let M = Y .2 T'X;. Then M is a
maximal ideal of T" and Ty is not Noetherian. By [8, Proposition 3.7], R is not
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an SM domain. Note that M is a maximal wg-ideal of T, but not a maximal
w-ideal of T.
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