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A NOTE ON w-NOETHERIAN RINGS

Shiqi Xing and Fanggui Wang

Abstract. Let R be a commutative ring. An R-module M is called a
w-Noetherian module if every submodule of M is of w-finite type. R is
called a w-Noetherian ring if R as an R-module is a w-Noetherian module.
In this paper, we present an exact version of the Eakin-Nagata Theorem
on w-Noetherian rings. To do this, we prove the Formanek Theorem
for w-Noetherian rings. Further, we point out by an example that the
condition (†) in the Chung-Ha-Kim version of the Eakin-Nagata Theorem
on SM domains is essential.

1. Introduction

Throughout the paper, all the rings are commutative rings with 1 6= 0.
Let R ⊆ T be an extension of rings. If T is a finitely generated R-module, it

is well-known that if R is Noetherian, then so is T . In 1968, P. M. Eakin ([4])
and M. Nagata ([7]) independently proved the converse: If T is Noetherian,
then R is also Noetherian. This theorem is usually called the Eakin-Nagata
Theorem in commutative algebra. After the notion of strong Mori domains (SM
domains for short) was introduced by F. G. Wang and R. L. McCasland (see [11]
and [12]), many classical theorems on Noetherian rings have been generalized
to SM domains, for example, Hilbert Basis Theorem ([12, Theorem 1.13]),
Principal Ideal Theorem ([12, Corollary 1.11]), Krull-Akizuki Theorem ([12,
Theorem 3.4]), Matijevic Theorem ([9, Theorem 1.5]), Mori-Nagata Theorem
([2, Theorem 3.1]), Matlis Theorem and Cartan-Eilenberg-Bass Theorem on
injective modules ([6, Proposition 2.6] & [6, Theorem 2.9]). It is natural to
ask how to present the Eakin-Nagata Theorem on SM domains. Let R ⊆ T be
an extension of domains and let T as R-module be a w-finite type w-module.
Recently, Chung, Ha and Kim proved in [3] that when R ⊆ T satisfies the
condition (†) (i.e., if N is a co-semi-divisorial R-module, then HomR(T,N) is
a co-semi-divisorial T -module), R is also an SM domain if T is an SM domain.
Naturally, we ask whether the statement on the Eakin-Nagata Theorem for
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SM domains by Chung-Ha-Kim is exact and whether the condition (†) can be
deleted.

It is worthy noting that the notions of w-modules and SM domains have
been generalized to an arbitrary commutative ring, see [13, 15]. So it is also
natural to ask what is the exact statement on the Eakin-Nagata Theorem for
w-Noetherian rings. Let M as R-module be finitely generated and faithful. In
his paper [5] Formanek proved that if M satisfies the ascending chain condition
for submodules of M of the form of IM , where I is an ideal of R, then R is
a Noetherian ring. In this paper, we first prove the Formanek Theorem for w-
Noetherian rings. As a corollary, we obtain the exact form of the Eakin-Nagata
Theorem for w-Noetherian rings.

To see the essence of the condition (†) in the Chung-Ha-Kim version on the
Eakin-Nagata Theorem, we give some equivalent characterizations on it, for
commutative rings. We also post an example for which if the condition (†) is
deleted, that T is an SM domains does not imply that R is an SM domain.

Now, we recall some material of w-modules. Following [15], an ideal J of R
is called a GV-ideal, denoted by J ∈ GV(R), if J is finitely generated and the
natural homomorphism φ : J → HomR(J,R) is an isomorphism. An R-module
M is called GV-torsion-free if Jx = 0 with J ∈ GV(R) and x ∈ M implies
x = 0. M is called GV-torsion if there exists J ∈ GV(R) such that Jx = 0 for
any x ∈ M . GV-torsion-free and GV-torsion mean co-semi-divisrial and w-null
respectively in [3]. For a GV-torsion-free module M , set

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)},

which is called the w-envelope of M , where E(M) is the injective hull of M .
If M = Mw, then M is called a w-module (over R). In particular, if A is an
ideal of R with A = Aw, then A is called a w-ideal of R. Let R ⊆ T be an
extension of rings. As in [14], T is called w-linked over R if T as R-module is
a w-module. When R ⊆ T is an extension of integral domains, the w-linked
extension is said to be t-linked in a lot of literature.

Let f : A → B be an R-homomorphism. Then, as in [10], f is called a w-
epimorphism (resp., w-monomorphism and w-isomorphism) if fP : AP → BP is
an epimorphism (resp., a monomorphism and an isomorphism) for any maximal
w-ideal P of R. A sequence of modules and homomorphisms A → B → C is

called w-exact sequence if the sequence AP
fP
−→ BP

gP
−→ CP is exact for any

maximal w-ideal P of R. An R-module M is said to be of w-finite type if there
exists a w-exact sequence F → M → 0, where F is finitely generated free;
equivalently, there is a finitely generated submodule N of M such that M/N is
GV-torsion. And M is called a w-Notherian module if every submodule of M is
of w-finite type. In particular, if R as R-module is a w-Noetherian module, then
R is called a w-Notherian ring. If M is a w-module, then M is w-Noetherian if
and only if M satisfies the ascending chain condition for w-submodules of M .
Certainly, if R is a domain, then a torsion-free w-modules M is w-Notherian
module if and only if M is an SM module; R is w-Noetherian if and only if R is
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an SM domain. For unexplained terminologies and notations, we refer to [10],
[14] and [15].

2. The main results

We start by the following observation for w-Noetherian rings.

Theorem 2.1. Let M be a GV-torsion-free w-Noetherian module of w-finite

type. Set I = ann(M). Then R/I as an R-module is w-Notherian. In particu-

lar, if M is faithful, then R is a w-Notherian ring.

Proof. Since M is of w-finite type, there is a finitely generated submodule
N = Rx1 + · · · + Rx2 such that M/N is GV-torsion. Define f : R → Mn by
f(r) = (rx1, . . . , rxn) for r ∈ R. Then ker(f) = ann(N).

Now we prove ann(M) = ann(N). To do this, we show (ann(M))P =
ann(MP ) for all maximal w-ideal P of R. In fact, let r ∈ ann(M). Then
rM = 0, whence r

1
MP = 0. Thus we have (ann(M))P ⊆ ann(MP ). On the

other hand, if r ∈ R and s 6∈ P with r
s
MP = 0, then we have r

s
NP = 0. Since N

is finitely generated, we have s1rN = 0 for some s1 6∈ P . For any x ∈ M , take a
GV-ideal J with Jx ⊆ N . Then Js1rx = 0. Because M is GV-torsion-free, we
have s1rx = 0. Hence s1r ∈ ann(M), and therefore ann(MP ) ⊆ (ann(M))P .
Thus we get (ann(M))P = ann(MP ).

Since M is GV-torsion-free and Mw = Nw, MP = NP by [15, Corollary
3.10]. Hence (ann(M))P = ann(MP ) = ann(NP ) = (ann(N))P . Noting that
ann(M) and ann(N) are w-ideals, we have ann(M) = ann(N) by [15, Corollary
3.10]. Hence the induced map f : R/I → Mn is a monomorphism. So R/I is
a w-Noetherian R-module by [15, Proposition 4.5]. �

Before we prove the Formanek Theorem for w-Noetherian rings, we need the
following lemma.

Lemma 2.2. Let M be a GV-torsion-free R-module. Then M is w-Noetherian

module if and only if Mw is a w-Noetherian module.

Proof. Note that the inclusion map M → Mw is a w-isomorphism. Apply [10,
Proposition 3.5]. �

Now, we can prove the Formanek theorem for w-Noetherian rings.

Theorem 2.3. Let M be a faithful w-module of w-finite type. Then M has

ACC of submodules of M of the form (IM)w if and only if R is a w-Noetherian

ring, where I is an ideal of R.

Proof. Suppose R is a w-Noetherian ring. Certainly M is a w-Noetherian
module by [10, Theorem 3.6] since M is of w-finite type. Hence M has ACC
on submodules of M of the form (IM)w.

For the converse, by Theorem 2.1, it is sufficient to show that M is w-
Noetherian. If not, set

Ω = {(IM)w | I is an ideal of R and M/(IM)w is not w-Noetherian}.
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By hypothesis Ω has a maximal element (BM)w. Set

S = {A |A is an ideal of R with (AM)w = (BM)w}.

Let {Ai} be a chain in S. Then A =
⋃

iAi is an ideal of R. It is clear
that (BM)w = (AiM)w ⊆ (AM)w. On the other hand, if y ∈ (AM)w, then
there exists J ∈ GV(R) such that Jy ⊆ AM . Write J = (b1, . . . , bn). Then,
for each i, there exists some Aki

such that biy ⊆ Aki
M . Hence, there exists

some Ak such that Jy ⊆ AkM . Therefore y ∈ (AkM)w = (BM)w. Thus
(AM)w = (BM)w and hence A is an upper bound of the chain {Ai}. It follows
that S has a maximal element in Ω, say C.

If I ) C, then (IM)w 6= (CM)w = (BM)w. So (IM)w ) (BM)w, which
implies that M/(IM)w is a w-Noetherian module. Note that M/(IM)w is
w-Notherian if and only if (M/(IM)w)w is w-Noetherian by Lemma 2.2. By
replacing (M/(CM)w)w by M , we can assume that M is not w-Noetherian but
M/(IM)w is w-Noetherian for any nonzero ideal I of R.

Set S′ = {N |N is a w-submodule of M and M/N is faithful}. Since M is
faithful, 0 ∈ S′, and hence S′ is not empty. Let {Ni} be a chain in S′ and
put N =

⋃

Ni. Then N is a w-submodule of M by [15, Proposition 2.6]. We
conclude thatM/N is faithful. In fact, since M is of w-finite type, there exists a
finitely generated submodule F such that Fw = M . Write F = Rx1+· · ·+Rxn.
If ann(M/N) 6= 0, take 0 6= a ∈ ann(M/N). Then axi ∈ N . Hence there
exists some Nk such that axi ∈ Nk for each i. Thus aF ⊆ Nk, and hence
aM = aFw ⊆ (aF )w ⊆ (Nk)w = Nk. Consequently, a ∈ ann(M/Nk) = 0,
a contradiction. Hence M/N is faithful and N is the upper bound of {Ni}.
By Zorn’s Lemma, S′ has a maximal element, say E. Since M is of w-finite
type, it follows that M/E is also a w-finite type GV-torsion-free module by
[10, Proposition 1.3] and [15, Theorem 2.7]. Now we prove that M/E is a
w-Noetherian module. In this case we obtain that R is a w-Noetherian ring by
Theorem 2.1.

Assume by contradiction that M/E is not w-Noetherian. Then there exists
a non-finite type w-submodule N of M by [15, Proposition 4.2]. By replacing
(M/E)w by M we can assume that (a) M is not a w-Noetherian module; (b)
M/(IM)w is a w-Noetherian module for any non-zero ideal I of R; (c) M/N

is not faithful for each non-zero w-submodule N of M .
Since M is not w-Noetherian, there is a non-finite type w-submodule N of

M . By (c), take 0 6= a ∈ R with aM ⊆ N . We conclude that aM is of w-
finite type. (Note that we do not have (aM)w = aMw for commutative rings
in general.) In fact, if x ∈ M , then Jx ⊆ F for some J ∈ GV(R). Hence
Jax ⊆ aF . So ax ⊆ (aF )w . Thus aM ⊆ (aF )w , whence (aM)w = (aF )w. It
follows that (aM)w is of w-finite type. Also, since M/(aM)w is a w-Noetherian
module by (b), it follows that N/(aM)w is of w-finite type. Hence we see from
the exact sequence 0 → (aM)w → N → N/(aM)w → 0 that N is of w-finite
type by [10, Proposition 1.3], a contradiction. �
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Let R ⊆ T be a w-linked extension of rings. For any ideal A of T , denote by
AW the w-envelope of A as a T -module, which is different from the w-envelope
Aw of A as an R-module. If Aw = A, then we say that A is a wR-ideal of T .
T is said to be a wR-Noetherian ring if T has the ascending chain condition of
wR-ideals of T . When R ⊆ T is a w-linked extension of integral domains, then
wR is a finite character star-operation on T . Now we record the following easy
facts and omit their proofs.

Lemma 2.4. Let R ⊆ T be a w-linked extension of rings. Then the following

statements hold.

(i) For any ideal A of T , Aw ⊆ AW .

(ii) If A is a w-ideal of T , then A is a wR-ideal of T .

(ii) If A is a wR-ideal of T , then A
⋂

R is a w-ideal of R.

(iv) For any proper wR-ideal A of T , there is a maximal wR-ideal P with

A ⊆ P . Therefore, T has certainly a maximal wR-ideal.

(v) If T is a wR-Noetherian ring, then T is w-Noetherian.

Now, we can present the exact version of the Eakin-Nagata Theorem for
w-Noetherian rings by making use of the Formanek Theorem for w-Noetherian
rings.

Theorem 2.5. Let R ⊆ T be a w-linked extension of rings in which T as an

R-module is of w-finite type. Then R is a w-Noetherian ring if and only if T

is a wR-Noetherian ring.

Proof. Suppose R is w-Noetherian. Since T is a w-finite type w-module over R,
T is a w-Noetherian R-module by [13, Lemma 3.5]. Hence T is a wR-Notherian
ring. Conversely, suppose T is a wR-Noetherian ring and I is an ideal of R.
Then (IT )w is a wR-ideal of T . Note that T is certainly a faithful R-module.
Since T has ACC for wR-ideals of T of the form (IT )w, it follows that R is
w-Noetherian by Theorem 2.3. �

Corollary 2.6. Let R ⊆ T be a w-linked extension of rings in which T as

an R-module is of w-finite type. If R is a w-Noetherian ring, then T is a

w-Noetherian ring.

Recall from [3] the Chung-Ha-Kim version of Eakin-Nagata Theorem for SM
domains:

Let R ⊆ T be an w-linked extension of integral domains in which T is a w-
finite type R-module. Assume that R ⊆ T satisfies (†). If T is an SM domain,
then R is also an SM domain.

To explain the condition (†) in [3], the other condition is posted as follows:
(♯): For each prime ideal Q of T with Q

⋂

R 6= 0, (Q
⋂

R)t ( D implies
Qt ( T .

It was proved that the conditions (†) and (♯) are equivalent in [3] when
R ⊆ T is a w-linked extension of integral domains and T is of w-finite type
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over R. To clarify what these conditions mean for extensions of commutative
rings, we give the following theorem.

Theorem 2.7. Let R ⊆ T be a w-linked extension of rings. Then the following

statements is equivalent:
(i) Each maximal wR-ideal of T is a maximal w-ideal of T .

(ii) If J ∈ GV(T ), then there exists J ′ ∈ GV(R) such that J ′ ⊆ J .

(iii) Each wR-ideal of T is a w-ideal of T .

If R and T are integral domains, the conditions above are equivalent to the

following condition:
(iv) For each prime ideal Q of T , (Q

⋂

R)t ( R implies Qt ( T , that is, the

condition (♯) holds.
Also, if T is of w-finite type over R, the conditions above are equivalent to

the following condition:
(v) If N is a GV-torsion-free R-module, then HomR(T,N) is a GV-torsion-

free T -module, that is, the condition (†) holds.

Proof. (i)⇒(ii). Let J ∈ GV(T ). If Jw 6= T , then there exists a maximal
wR-ideal Q of T such that Jw ⊆ Q by Lemma 2.4. Also, it means that Q is a
maximal w-ideal of T by hypothesis. Since J ⊆ Jw ⊆ Q and JW = T , it means
that Q = T , a contradiction. Hence, Jw = T , and hence there is J ′ ∈ GV(R)
such that J ′ = J ′ · 1 ⊆ J .

(ii)⇒(iii). Suppose A is a wR-ideal of T . If Jx ⊆ A with J ∈ GV(T ) and
x ∈ T , take J ′ ∈ GV(R) such that J ′ ⊆ J . Hence J ′x ⊆ A. Since A is a
wR-ideal of T , it implies that x ∈ Aw = A. Hence A is a w-ideal of T .

(iii)⇒(i). It is trivial.
Now we assume that R ⊆ T is a w-linked extension of integral domains.
(i)⇒(iv). Let Q be a prime ideal of T such that (Q

⋂

R)t 6= R. Then there
exists a maximal t-ideal P of R such that Q

⋂

R ⊆ (Q
⋂

R)t ⊆ P 6= R. Note
that P is also a maximal w-ideal of R by [1, Cororally 2.17] and Q

⋂

R is a w-
ideal of R by [12, Proposition 1.1]. Hence Q is a wR-ideal of T by [14, Theorem
3.7]. It follows that there exists a maximal wR-ideal M of T such that Q ⊆ M .
Since M is a maximal w-ideal of T by hypothesis, M is also a maximal t-ideal
of T . Hence Qt ⊆ Mt = M 6= T .

(iv)⇒(i). Let Q be a maximal wR-ideal of T . Then Q
⋂

R is a w-ideal
of R by Lemma 2.4. Hence there exists a maximal w-ideal P of R such that
Q
⋂

R ⊆ P . Noting that P is a maximal t-ideal of R by [1, Corollary 2.17], we
have (Q

⋂

R)t ⊆ P 6= R. It means that Qt 6= T by hypothesis. Hence there
exists a maximal t-ideal Q′ of T such that Q ⊆ Qt ⊆ Q′. Noting that Q′ is a
w-ideal of T and hence a wR-ideal of T , we have Q = Q′ by the maximality of
Q. It follows that Q is a maximal w-ideal of T .

(vi)⇔(v). See [3, Proposition 2.7]. �

Corollary 2.8. Let R ⊆ T be a w-linked extension of rings in which T is of

w-finite type over R. Assume that T satisfies one of the former three equivalent
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conditions in Theorem 2.7. Then R is a w-Noetherian ring if and only if T is

a w-Noetherian ring.

Corollary 2.9. Let R ⊆ T be a w-linked extension of integral domains in

which T is of w-finite type over R. Assume that T satisfies one of the equivalent

conditions in Theorem 2.7. Then R is an SM domain if and only if T is an

SM domain.

Let R ⊆ T be a w-linked extension of domains in which T as an R-module is
of w-finite type. Now we will give an example to show that the Chung-Ha-Kim
version of Eakin-Nagata Theorem does not hold if the condition (†) is deleted.
That is when T is an SM domain, R does not have to be an SM domain.

Let

R //

��

T

��

D // F

be a commutative diagram of rings and homomorphisms. If R, D and T are
domains, F is a field, and R is a proper subring of T , then the commutative
diagram is called a Milnor square. Thus there is a maximal ideal M of T such
that T/M ∼= F . In particular, if R = D+M , then this Milnor square is called
a D+M construction. For a Milnor square RDTF , we usually write F = T/M

and regard that M is a common ideal of T and R with D = R/M .

Lemma 2.10. Let RDTF be a Milnor square. If D and F are fields and

[F : D] < ∞, then T as an R-module is finitely generated.

Proof. Let π : T → T/M = F be the natural map. Since n := [F : D] < ∞,
there are elements x1 = 1, x2, . . . , xn ∈ T such that π(x1), π(x2), . . . , π(xn) is a
basis of F overD. Set A = Rx1+· · ·+Rxn. Then A is a fractional ideal ofR and
A ⊆ T . Since 1 ∈ A, it means that AT = T . SoM = MT = MAT = MA ⊆ A.

Let x ∈ T . Then π(x) = π(r1)π(x1) + · · · + π(rn)π(xn) for ri ∈ R, i =
1, 2, . . . , n. Hence x − (r1x1 + · · · + rnxn) ∈ M ⊆ A. Thus we have x ∈ A.
Therefore A = T , that is, T as an R-module is finitely generated. �

Example 2.11. Let D ⊆ F be an extension of fields with [F : D] < ∞. Let
T = F [X1, . . . , Xn, . . .] be the polynomial ring over F with countably infinitely
many indeterminates. Construct the Milnor square as follows:

R //

��

T

��

D // F

Then T is w-linked over R and T is finitely generated over R by Lemma 2.10.
By [8, Theorem 4.7] T is an SM domain. Let M =

∑

∞

i=1 TXi. Then M is a
maximal ideal of T and TM is not Noetherian. By [8, Proposition 3.7], R is not
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an SM domain. Note that M is a maximal wR-ideal of T , but not a maximal
w-ideal of T .
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