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ALMOST PRINCIPALLY SMALL INJECTIVE RINGS

Yueming Xiang

Abstract. Let R be a ring and M a right R-module, S = EndR(M).

The module M is called almost principally small injective (or APS-
injective for short) if, for any a ∈ J(R), there exists an S-submodule
Xa of M such that lMrR(a) = Ma ⊕Xa as left S-modules. If RR is an

APS-injective module, then we call R a right APS-injective ring. We
develop, in this paper, APS-injective rings as a generalization of PS-
injective rings and AP -injective rings. Many examples of APS-injective
rings are listed. We also extend some results on PS-injective rings and

AP -injective rings to APS-injective rings.

1. Introduction

Let R be a ring. A right ideal I of R is called small if, for every proper right
ideal K of R, K+I ̸= R. Recall that a ring R is right principally small injective
(or PS-injective) (resp. P -injective, small injective, mininjective) if every R-
homomorphism f : I → R, for every principally small (resp. principally, small,
minimal) right ideal I, can be extended to R. The detailed discussion of P -
injective, small injective and mininjective rings can be found in [2, 3, 4, 8, 9,
10, 12]. The concept of PS-injective rings was first introduced in [14] as a
generalization of P -injective rings and small injective rings. It was shown that
every right PS-injective ring is also right mininjective. In [11], Page and Zhou
introduced AP -injectivity and AGP -injectivity of modules and rings. Given a
right R-module M , S = EndR(M). The module M is called AP -injective if, for
any a ∈ R, there exists an S-submoduleXa ofM such that lMrR(a) = Ma⊕Xa

as left S-modules. The module M is called AGP -injective if, for any 0 ̸= a ∈ R,
there exists a positive integer n = n(a) and an S-submodule Xa of M such that
an ̸= 0 and lMrR(a

n) = Man ⊕Xa as left S-modules. A ring R is called right
AP -injective (resp. AGP -injective) if RR is an AP -injective (resp. AGP -
injective) module. Many of the results on right P -injective rings were obtained
for the two classes of right AP -injective rings and right AGP -injective rings. In
[17], Zhou continued the study of left AP -injective rings and left AGP -injective
rings with various chain conditions.
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In the present paper, we say that a right R-module M is APS-injective if,
for any a ∈ J(R), there exists an S-submodule Xa of M such that lMrR(a) =
Ma ⊕ Xa as left S-modules. A ring R is called right APS-injective if RR is
an APS-injective module. Similarly, we can define a left APS-injective ring.
Some examples are listed to show that APS-injective rings are the proper
generalization of PS-injective rings and AP -injective rings. It is also shown
that there are many similarities between AP -injective rings and APS-injective
rings. In light of this fact, some results on PS-injective rings and AP -injective
rings are as the corollaries of our results, respectively.

Throughout R is an associative ring with identity and all modules are uni-
tary. J = J(R), soc(RR) and Z(RR) denote the Jacobson radical, right so-
cle and right singular ideal of R, respectively. For a right R-module M , let
S = EndR(M), then we have an (S,R)-bimodule M . If X is a subset of R,
the right (left) annihilator of X in R is denoted by rR(X) (lR(X)). We write
a ∈ L− I to indicate that a ∈ L but a /∈ I and N ≤e M to indicate that N is
an essential submodule of M . The notation Mn stands for the direct sum of n
copies of the module M , written as column matrices. For the usual notations
we refer the reader to [1], [6] and [10].

2. Examples and basic properties

Definition 2.1. LetM be a right R-module, S = EndR(M). The moduleM is
called almost principally small injective (or APS-injective for short) if, for any
a ∈ J(R), there exists an S-submodule Xa of M such that lMrR(a) = Ma⊕Xa

as left S-modules. If RR is an APS-injective module, then we call R a right
APS-injective ring. Similarly, we can define the concept of left APS-injective
rings.

For an R-module N and a submodule P of N , we will identify HomR(N,M)
with the set of homomorphisms in HomR(P,M) that can be extended to N ,
and hence HomR(N,M) can be seen as a left S-submodule of HomR(P,M).

Lemma 2.2. Let MR be a module, S = EndR(M) and a ∈ J(R).

(1) If lMrR(a) = Ma ⊕ X for some X ⊆ M as left S-modules, then
HomR(aR,M) = HomR(R,M)⊕ Γ as left S-modules, where Γ = {f ∈
HomR(aR,M) : f(a) ∈ X}.

(2) If HomR(aR,M) = HomR(R,M)⊕ Y as left S-modules, then lMrR(a)
= Ma⊕X as left S-modules, where X = {f(a) : f ∈ Y }.

(3) Ma is a direct summand of lMrR(a) as left S-modules if and only if
HomR(R,M) is a direct summand of HomR(aR,M) as left S-modules.

Proof. The proof is similar to that of [11, Lemma 1.2]. □
From Lemma 2.2, we have the following corollary.

Corollary 2.3. Let MR be a module and a ∈ J(R). Then lMrR(a) = Ma if
and only if every R-homomorphism of aR into M extends to R.
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Remark 2.4. (1) Obviously, right PS-injective modules are right APS-injective.
But the converse is false in general. For example, let R = ( F F

0 F ) with F a field
and MR = ( 0 F

0 F ). Then M is right APS-injective but not right PS-injective.
In fact, choose 0 ̸= x ∈ F . Then a = ( 0 x

0 0 ) ∈ J(R) and lMrR(a) = M ̸=
Ma = 0. By the preceding corollary, M is not right PS-injective. Note that
J(R) = ( 0 F

0 0 ). Thus, lMrR(a) = Ma ⊕M for any a ∈ J(R). Therefore, M is
right APS-injective.

(2) Right AP -injective modules are right APS-injective.
(3) Right APS-injective rings are right almost mininjective [13] (A ring R

is called right almost mininjective if, for any minimal right ideal kR of R,
there exists an S-submodule Xk of R such that lRrR(k) = Rk ⊕ Xk as left
S-modules). In fact, in view of [6, Lemma 10.22], every minimal right ideal of
R is either nilpotent or a direct summand of R.

Example 2.5. The three examples of [11, Examples 1.5] are commutative
APS-injective but not PS-injective.

Example 2.6. Let R = Z be the ring of integers. Then R is APS-injective
but not AGP -injective.

Example 2.7. Let K be a field and L be a proper subfield of K such that
ρ : K → L is an isomorphism, e.g., let K = F (y1, y2, . . .) with F a field,
ρ(yi) = yi+1 and ρ(c) = c for all c ∈ F . Let K[x1, x2; ρ] be the ring of twisted
right polynomials over K where kxi = xiρ(k) for all k ∈ K and for i = 1, 2.
Set R = K[x1, x2; ρ]/(x

2
1, x

2
2). In view of [3, Example 1 and Proposition 1], R

is a left AGP -injective but not APS-injective.

Theorem 2.8. Let R be a right APS-injective ring. Then.

(1) J(R) ⊆ Z(RR).
(2) soc(RR) ⊆ rR(J).

Proof. (1) Take any a ∈ J(R). If a /∈ Z(RR), then there exists a nonzero
right ideal I of R such that rR(a) ∩ I = 0. So there exists b ∈ I such that
ab ̸= 0. Note that ab ∈ J(R), by hypothesis, there exists 0 ̸= u ∈ abR
such that lRrR(u) = Ru ⊕ Xu, where Xu ⊆ RR. Write u = abc for some
c ∈ R. If t ∈ rR(abc), then abct = 0, implying ct ∈ rR(ab) = rR(b) since
rR(a) ∩ I = 0. Hence, (bc)t = b(ct) = 0, and so t ∈ rR(bc). This shows that
rR(bc) = rR(abc). Note that bc ∈ lRrR(bc) = lRrR(abc) = Ru ⊕ Xu. Write
bc = dabc+ x, where dabc ∈ Ru−Xu and x ∈ Xu −Ru. Then x = (1− da)bc,
and so bc = (1 − da)−1x ∈ Xu since 1 − da is invertible, contradicting with
dabc ∈ Ru−Xu.

(2) Let kR be a simple right ideal of R. Suppose jk ̸= 0 for some j ∈ J(R),
then rR(jk) = rR(k). Note that jk ∈ J(R) and R is right APS-injective.
Then there exists a left ideal Xjk of R such that lRrR(jk) = Rjk⊕Xjk. Since
k ∈ lRrR(jk), write k = rjk + x, where rjk ∈ Rjk −Xjk and x ∈ Xjk − Rjk.
Then x = (1−rj)k, and hence k = (1− jk)−1x ∈ Xjk since 1− jk is invertible,
contradicting with rjk ∈ Rjk −Xjk. □
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The following example shows that a right mininjective ring need not be right
APS-injective.

Example 2.9. Let R be the ring of all N-square upper triangular matrices
over a field F that are constant on the diagonal and have only finitely many
nonzero entries off the diagonal. By [16, Example 1.7], soc(RR) = Z(RR) = 0
and J(R) ̸= 0. So R is right mininjective. However, R is not right APS-
injective by Theorem 2.8(1).

A ring R is called semiregular if R/J(R) is von Neumann regular and
idempotents lift modulo J(R), equivalently if, for any a ∈ R, there exists
e2 = e ∈ Ra such that a(1− e) ∈ J(R) (cf. [10, Lemma B.40]).

Proposition 2.10. If R is semiregular, then R is right AP -injective if and
only if R is right APS-injective.

Proof. It is enough to prove sufficient condition. Since R is semiregular, for
any a ∈ R, Ra = Re ⊕ Rb, where e2 = e ∈ R and b ∈ J(R). By hypothesis,
lRrR(b) = Rb ⊕Xb for some left ideal Xb of R. Then Ra ⊕Xb = Re ⊕ Rb ⊕
Xb = lR(1 − e) ⊕ lRrR(b) = lR((1 − e)R ⊕ rR(b)) = lR(rR(Re) ⊕ rR(Rb)) =
lRrR(Re⊕Rb) = lRrR(Ra) = lRrR(a). Therefore, R is right AP -injective. □
Remark 2.11. There exists a ring that is semiregular but not right APS-
injective. Let R =

( Z2 Z2

0 Z2

)
, where Z2 is the ring of integers modulo 2. Then

J(R) =
(
0 Z2
0 0

)
, and Z(RR) = 0. By Theorem 2.8, R is not right APS-injective.

But R/J(R) ∼=
( Z2 0

0 Z2

)
is von Neumann regular and any idempotent of R/J(R)

can be lifted to R, so R is semiregular.

By Proposition 2.10 and [11, Theorem 2.16], we have the following result.

Corollary 2.12. If R is a semiperfect and right APS-injective ring, then
R = R1 × R2, where R1 is semisimple and every simple right ideal of R2 is
nilpotent.

Clearly, a semiprimitive ring (J(R) = 0) is left and right APS-injective. But
the converse is not true as Example 2.5. Next, we shall consider when a right
APS-injective ring is semiprimitive. Following [7], A ring R is called a right
J − PP ring if aR is projective for any a ∈ J(R).

Proposition 2.13. Let R be a ring. Then the following are equivalent:

(1) R is semiprimitive.
(2) R is right J − PP and right APS-injective.
(3) R is a right APS-injective ring whose every simple singular right R-

module is PS-injective.

Proof. (1)⇒(2) and (1)⇒(3) are trivial.
(2)⇒(1). Suppose 0 ̸= a ∈ J(R). Since R is right J − PP , aR is projective.

So the exact sequence 0 → rR(a) → R → aR → 0 splits. Then rR(a) = eR
for some e2 = e ∈ R. It follows that lRrR(a) = lR(eR) = R(1− e). Note that
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R is also right APS-injective, so there exists a left ideal Xa of R such that
lRrR(a) = Ra ⊕Xa. Then Ra is a direct summand of R(1 − e), and hence a
direct summand of RR, which implies a = 0, a contradiction.

(3)⇒(1). We first show that J
∩
Z(RR) = 0. Take any b ∈ J

∩
Z(RR). If

b ̸= 0, then rR(b) + RbR is an essential right ideal of R. If rR(b) + RbR ̸= R,
there exists a maximal essential right ideal T of R such that rR(b) + RbR ⊆
T . By hypothesis, R/T is PS-injective. Note that rR(b) ⊆ T , then the R-
homomorphism f : bR → R/T by br 7→ r + T is well defined. So f = (c+ T )·
for some c ∈ R. Then f(b) = 1 + T = cb + T . Note that cb ∈ RbR ⊆ T ,
so 1 ∈ T , a contradiction. This proves that rR(b) + RbR = R, and hence
rR(b) = R because RbR is a small ideal of R. This implies b = 0, which
is required contradiction. Therefore, J(R) = J ∩ Z(RR) = 0 by Theorem
2.8(1). □

Now we construct a right APS-injective ring that is not left APS-injective.

Example 2.14. Let R = (K K
0 A ) , where K = Z2 and

A = {(a1, a2, . . . , an, a, a, . . .) | a, a1, a2, . . . ∈ K,n ∈ N}.
If k ∈ K and (a1, a2, . . . , an, a, a, . . .) ∈ A, let k · (a1, a2, . . . , an, a, a, . . .) = ka.

Following [2, Example 1], R is right P -injective, and hence right APS-
injective. But J(R) = ( 0 K

0 0 ) ̸= 0, so R is not semiprimitive. We claim that R
is not left APS-injective. By Proposition 2.13, it is enough to show that every

simple singular left R-module is PS-injective. In fact, M =
(

K K

0 Z(N)
2

)
is the

unique maximal essential right ideal of R, where

Z(N)
2 = {(a1, a2, . . . , an, 0, 0, . . .) | a1, a2, . . . ∈ K,n ∈ N}.

In view of [15, p. 5], R = R/M is left P -injective, and hence left PS-injective.

Proposition 2.15. If R is a right APS-injective ring and R/soc(RR) satisfies
the ACC on right annihilators, then J(R) is nilpotent.

Proof. Write S = soc(RR) and R = R/S. For any sequence a1, a2, a3, . . . ∈
J(R), there is an ascending chain

rR(a1) ⊆ rR(a2 a1) ⊆ rR(a3 a2 a1) ⊆ · · · ,
by hypothesis, there exists a positive integer m such that

rR(am · · · a2 a1) = rR(am+k · · · am · · · a2 a1), k = 1, 2, . . . .

Since an+1an · · · a1 ∈ J(R) ⊆ Z(RR) by Theorem 2.8(1), rR(an+1an · · · a1) is
the essential right ideal of R. Then S ⊆ rR(an+1an · · · a1).

Now we prove that

(1) rR(an · · · a2 a1) ⊆ rR(an+1an · · · a1)/S ⊆ rR(an+1 an · · · a1).
In fact, for any b+ S ∈ rR(an · · · a2 a1), an · · · a1b ∈ S. Then an+1an · · · a1b =
0 because S ⊆ rR(an+1). So b ∈ rR(an+1an · · · a1), and hence b + S ∈
rR(an+1an · · · a1)/S. But the second inclusion is clear.
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Since rR(am · · · a2 a1) = rR(am+2 am+1 · · · a2 a1), by (1),

rR(am+1am · · · a1)/S = rR(am+2am+1 · · · a1)/S.

Then rR(am+1am · · · a1) = rR(am+2am+1 · · · a1), and so (am+1am · · · a1)R ∩
rR(am+2) = 0. Note that rR(am+2) is also an essential right ideal of R, then
am+1am · · · a1 = 0. So J(R) is a right T -nilpotent ideal and the ideal J(R) +
S/S of R is also a right T -nilpotent. By [1, Proposition 29.1], J(R) + S/S
is nilpotent. Then there exists a positive integer t such that (J(R))t ⊆ S, so
(J(R))t+1 ⊆ J(R)S = 0, as desired. □

Proposition 2.16. If R is a right APS-injective (resp. PS-injective, AP -
injective) ring, so is eRe for all e2 = e ∈ R such that ReR = R.

Proof. Let S = eRe and let a ∈ J(S) = eJe. Then a = ae ∈ J(R), so there
exists a left ideal Xa of R such that lRrR(a) = Ra⊕Xa. Since 1− e ∈ rR(a),
we see that t(1 − e) = 0 for any t ∈ Xa, which implies Xa = Xae. Thus
eRae∩eXae = 0. Clearly, eRae ⊆ lSrS(a) and eXae ⊆ lSrS(a) since Rae = Ra
and Xae = Xa. Now we prove the other inclusion. Take x ∈ lSrS(a), and
write 1 =

∑n
i=1 aiebi for some ai, bi in R. Then for any y ∈ rR(a), we get

aeyaie = ayaie = 0 for each i. This implies that xeyaie = 0 for each i, which
gives xy = xey = xey

∑n
i=1 aiebi = 0 since x ∈ S. So x ∈ lRrR(a), and hence

lSrS(a) ⊆ lRrR(a). Take x = s+t, where s ∈ Ra and t ∈ Xa. Hence, x = exe =
ese+ ete ∈ eRae+ eXae. This shows that lSrS(a) = eRae⊕ eXae = Sa⊕ eXa,
where eXa is a left ideal of S. Therefore, S is right APS-injective. □

Remark 2.17. The condition that ReR = R in Proposition 2.16 is needed. For
example, let R be the algebra of matrices, over a field F , of the form

R =


a x 0 0 0 0
0 b 0 0 0 0
0 0 c y 0 0
0 0 0 a 0 0
0 0 0 0 b z
0 0 0 0 0 c

 .

By [5, Example 9], R is a QF -ring, and hence it is right APS-injective. Let
e = e11 + e22 + e44 + e55 be a sum of canonical matrix units. Then e is an
idempotent of R such that ReR ̸= R and eRe ∼= S = ( F F

0 F ) . We claim that S is

not right APS-injective. In fact, J(S) = ( 0 F
0 0 ) . Then for any d = ( 0 d

0 0 ) ∈ J(S),

lSrS(d) = ( 0 F
0 F ) and Sd = ( 0 F

0 0 ) . So it does not exist a left ideal Xd of S such

that lSrS(d) = Sd⊕Xd.

Corollary 2.18. If the matrix ring Mn(R) over a ring R is right APS-injective
(n ≥ 1), then so is R.

Proof. If S = Mn(R) is right APS-injective, so is R ∼= e11Se11 by Proposition
2.16 because Se11S = S (here eij is the matrix unit). □
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We do not know if the converse of Corollary 2.18 holds. However, we have
the following result motivated by [11, Theorem 3.8].

Theorem 2.19. Let R be a ring and n ≥ 1. Then the following are equivalent:

(1) Mn(R) is right APS-injective.
(2) HomR(R

n, R) is a direct summand of HomR(I,R) as left R-modules
for any n-generated R-submodule I of Jn.

Proof. (1)⇒(2). Let S = Mn(R) and let I = a1R + · · · + anR ∈ Jn. Write
(a1, . . . , an) = A, then A ∈ J(S). By hypothesis, we have lSrS(A) = SA⊕XA

for some left ideal XA of S. Let

Γ =

 f ∈ HomR(I,R) :


f(a1) · · · f(an)
0 · · · 0
...

...
0 · · · 0

 ∈ XA

 .

It is easy to verify that Γ is a left R-submodule of HomR(I,R). We claim
that HomR(I,R) = HomR(R

n, R) ⊕ Γ as left R-modules. In fact, for any
g ∈ HomR(I,R), write

B =


g(a1) · · · g(an)
0 · · · 0
...

...
0 · · · 0

 .

Then B ∈ lSrS(A), and hence B = (cij)A+ (dij), where (cij) ∈ S and (dij) ∈
XA. Let h : Rn → R,

∑n
i=1 eiri 7→

∑n
i=1 c1iri, where ei is the standard basis

of Rn over R, and let k : I → R,
∑n

i=1 airi 7→
∑n

i=1 d1iri. Then g = h + k.
Note that 

d11 · · · d1n
0 · · · 0
...

...
0 · · · 0

 =


1 · · · 0
0 · · · 0
...

...
0 · · · 0

 (dij) ∈ XA.

So k ∈ Γ. Therefore, we have HomR(I,R) = HomR(R
n, R) + Γ. Suppose

l ∈ HomR(R
n, R)∩Γ. Then there exists (c1, . . . , cn) ∈ Rn such that (l(a1), . . .,

l(an)) = (c1, . . . , cn)A. Thus,
l(a1) · · · l(an)
0 · · · 0
...

...
0 · · · 0

 =


c1 · · · cn
0 · · · 0
...

...
0 · · · 0

A ∈ SA ∩XA = 0.

Therefore, HomR(I,R) = HomR(R
n, R)⊕ Γ.
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(2)⇒(1). Suppose A = (aij) ∈ J(S). Let I = a1R + · · · + anR, where ai
is i-th column of A. Then I ∈ Jn. By hypothesis, we have HomR(I,R) =
HomR(R

n, R)⊕ Γ for some left R-submodule Γ of HomR(I,R). Let

XA =




f1(a1) · · · f1(an)
f2(a1) · · · f2(an)

...
...

fn(a1) · · · fn(an)

 : fi ∈ Γ, i = 1, 2, . . . , n

 .

Then XA is a left ideal of S. Now we show that lSrS(A) = SA ⊕ XA as
left S-modules. It is easy to check that XA ⊆ lSrS(A). If B = (bij) ∈
lSrS(A), then rS(A) ⊆ rS(B). So f : AS → BS, A(sij) 7→ B(sij), (sij) ∈ S
is a well-defined S-homomorphism, which induces an R-homomorphism fi :∑n

j=1 ajrj 7→
∑n

j=1 bijrj from I to R for each 1 ≤ i ≤ n. Write fi =

gi + hi, where gi ∈ HomR(R
n, R) and hi ∈ Γ. Then, for each i, there ex-

ists (ci1, . . . , cin) ∈ Rn such that (gi(a1), . . . , gi(an)) = (ci1, . . . , cin)A. So,

B = (bij) = (cij)A+


h1(a1) · · · h1(an)
h2(a1) · · · h2(an)

...
...

hn(a1) · · · hn(an)

 ∈ SA+XA,

showing lSrS(A) = SA+XA. Let C ∈ SA∩XA. Then for some (dij) ∈ S and
some ki ∈ Γ(i = 1, 2, . . . , n),

C =


k1(a1) · · · k1(an)
k2(a1) · · · k2(an)

...
...

kn(a1) · · · kn(an)

 ∈ (dij)A.

Then, for each i, (ki(a1), . . . , ki(an)) = (di1, . . . , din)A, which shows that ki ∈
HomR(R

n, R) ∩ Γ = 0. Thus, each ki = 0, and hence C = 0. Therefore,
lSrS(A) = SA⊕XA. □

The following theorem is a generalization of [17, Theorem 2.1].

Theorem 2.20. Let R be a right Noetherian, left APS-injective ring. Then

(1) lR(J) ≤e
RR.

(2) J is nilpotent.
(3) lR(J) ≤e RR.

Proof. (1) For any 0 ̸= x ∈ R, it is enough to show that lR(J) ∩ Rx ̸= 0.
Since R has ACC on right annihilators, choose y ∈ R such that yx ̸= 0 and
rR(yx) is maximal in {rR(ax)|a ∈ R, ax ̸= 0}. Now we prove that yxJ = 0.
Otherwise, there exists a t ∈ J such that yxt ̸= 0. Note that yxt ∈ J and R
is left APS-injective, then rRlR(yxt) = yxtR⊕X for some right ideal X of R.
We proceed with the following two cases.
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Case 1. rRlR(yx) = rRlR(yxt). Then yx ∈ rRlR(yxt) = yxtR ⊕X. Write
yx = yxtr+z, where yxtr ∈ yxtR−X and z ∈ X−yxtR. So z = yx(1−tr), and
hence yx = z(1− tr)−1 since 1− tr is invertible, contradicting with yxtr /∈ X.

Case 2. rRlR(yx) ̸= rRlR(yxt). Then lR(yx) ̸= lR(yxt). It follows that
there exists u ∈ lR(yxt) but u /∈ lR(yx). Thus uyxt = 0 and uyx ̸= 0. This
gives that t ∈ rR(uyx) and t /∈ rR(yx). So rR(yx) ⊂ rR(uyx), contradicting
the maximality of rR(yx).

Then yxJ = 0, and so 0 ̸= yx ∈ lR(J) ∩Rx. Therefore, lR(J) ≤e
RR.

(2) There exists k ≥ 1 such that lR(J
k) = lR(J

k+1) = · · · . If J is not
nilpotent, choose rR(x) to be maximal in {rR(y)|yJk ̸= 0}. Then xJ2k ̸=
0 because lR(J

2k) = lR(J
k), so there exists b ∈ Jk with xbJk ̸= 0. Since

lR(J) ≤ lR(J
k), we have lR(J

k) ≤e
RR by (1). Thus, Rxb ∩ lR(J

k) ̸= 0, say
0 ̸= cxb ∈ lR(J

k). Hence, rR(x) ⊂ rR(cx) because xbJk ̸= 0, contradicting the
maximality of rR(x).

(3) If 0 ̸= d ∈ R, we must show that dR ∩ lR(J) ̸= 0. It is clear if dJ = 0.
Otherwise, since J is nilpotent by (2), there exists m ≥ 1 such that dJm ̸= 0
but dJm+1 = 0. Then 0 ̸= dJm ⊆ dR ∩ lR(J), as desired. □

In [17], a module M is said to satisfy the generalized C2-condition (GC2) if,
for any N ⊆ M and N ∼= M , N is a summand of M .

Corollary 2.21. If R is a right Noetherian, left APS-injective ring such that
RR satisfies (GC2), then it is right Artinian.

Proof. Note that R is right finitely dimensional. By [17, Lemma 1.1], R is
semilocal. By Theorem 2.18, J(R) is nilpotent. Thus, R is semiprimary, and
hence it is right Artinian by the Hopkins-Levitzki theorem. □

The condition that RR satisfies (GC2) can not be omitted. For example, the
ring R = Z is a Noetherian and APS-injective ring but not Artinian. From [10,
Proposition 1.46], a left Kasch ring is right C2. Thus, we have the following
corollary.

Corollary 2.22. If R is a right Noetherian, left Kasch and left APS-injective
ring, then it is right Artinian.

3. Trivial extensions

Let R be a ring and M a bimodule over R. The trivial extension of R and
M is

R ∝ M = {(a, x) | a ∈ R, x ∈ M}
with addition defined componentwise and multiplication defined by

(a, x)(b, y) = (ab, ay + xb).

For convenience, we write I ∝ X = {(a, x) | a ∈ I, x ∈ X}, where I is a subset
of R and X is a subset of M . It is easy to check that J(R ∝ M) = J(R) ∝ M .
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Proposition 3.1. Let R be a ring and Xa a left ideal of R for any a ∈ R,
S = R ∝ R. Then the following are equivalent:

(1) lRrR(a) = Ra⊕Xa.
(2) lSrS(0, a) = S(0, a) ⊕ X(0,a), where X(0,a) = 0 ∝ Xa is a left ideal of

S.
(3) lSrS(a, 0) = S(a, 0) ⊕ X(a,0), where X(a,0) = Xa ∝ 0 is a left ideal of

S.
(4) lSrS(a, a) = S(a, a)⊕X(a,a), where X(a,a) = Xa ∝ Xa is a left ideal of

S.

Proof. (1)⇒(2). For any (b, c) ∈ lSrS(0, a), rS(0, a) ⊆ rS(b, c). Since (0, 1) ∈
rS(0, a), 0 = (b, c)(0, 1) = (0, b), showing b = 0. If x ∈ rR(a), then (x, 0) ∈
rS(0, a) ⊆ rS(b, c), showing that 0 = (0, c)(x, 0) = (0, cx). So x ∈ rR(c),
and hence rR(a) ⊆ rR(c). Thus, c ∈ lRrR(c) ⊆ lRrR(a) = Ra ⊕ Xa. Write
c = ra+ y, where ra ∈ Ra−Xa and y ∈ Xa −Ra. Then (b, c) = (0, ra+ y) =
(r, 0)(0, a) + (0, y) ∈ S(0, a) +X(0,a), where X(0,a) = 0 ∝ Xa is a left ideal of
S. It is easy to prove that S(0, a)∩X(0,a) = 0, so lSrS(0, a) ⊆ S(0, a)⊕X(0,a).
Conversely, for any (m,n) ∈ S(0, a) ⊕ X(0,a), where X(0,a) = 0 ∝ Xa is a
left ideal of S. Then (m,n) = (r1, r2)(0, a) + (0, y) = (0, r1a + y), where
(r1, r2)(0, a) ∈ S(0, a) − X(0,a) and (0, y) ∈ X(0,a) − S(0, a). Note that r1a ∈
Ra−Xa and y ∈ Xa−Ra, so m = 0, n = r1a+ y ∈ Ra⊕Xa = lRrR(a). Then
rR(a) ⊆ rR(n). For any (k, l) ∈ rS(0, a), 0 = (0, a)(k, l) = (0, ak), showing
k ∈ rR(a), and hence nk = 0. Then (m,n)(k, l) = (0, n)(k, l) = (0, nk) = 0,
proving (m,n) ∈ lSrS(0, a).

(2)⇒(1). For any b ∈ lRrR(a), rR(a) ⊆ rR(b). If (x, y) ∈ rS(0, a), then
ax = 0. So x ∈ rR(a) ⊆ rR(b), showing (0, b)(x, y) = 0. Thus, (x, y) ∈
rS(0, b). So rS(0, a) ⊆ rS(0, b). This gives that (0, b) ∈ lSrS(0, b) ⊆ lSrS(0, b) =
S(0, a) ⊕ X(0,a). Write (0, b) = (r1, r2)(0, a) + (0, y) = (0, r1a + y), where
(r1, r2)(0, a) ∈ S(0, a) − X(0,a) and (0, y) ∈ X(0,a) − S(0, a). Note that r1a ∈
Ra−Xa and y ∈ Xa−Ra, so b = r1a+y ∈ Ra⊕Xa, proving lRrR(a) ⊆ Ra⊕Xa.
Now we show the other inclusion. For any c ∈ Ra ⊕ Xa, write c = ra + z,
where ra ∈ Ra − Xa and z ∈ Xa − Ra. Then (0, c) = (0, ra) + (0, z) =
(r, 0)(0, a) + (0, z) ∈ S(0, a) ⊕ X(0,a) = lSrS(0, a). So rS(0, a) ⊆ rS(0, c). If
x ∈ rR(a), then (x, 0) ∈ rS(0, a), showing 0 = (0, c)(x, 0) = (0, cx), and hence
x ∈ rR(c). Thus, rR(a) ⊆ rR(c). This implies that c ∈ lRrR(c) ⊆ lRrR(a).

The proofs of (1)⇔(3) and (1)⇔(4) are similar to that of (1)⇔(2). □

Corollary 3.2. Let R be a ring and a ∈ R, S = R ∝ R. Then the following
are equivalent:

(1) lRrR(a) = Ra.
(2) lSrS(0, a) = S(0, a).
(3) lSrS(a, 0) = S(a, 0).
(4) lSrS(a, a) = S(a, a).
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Corollary 3.3. Let R be a ring. If R ∝ R is right APS-injective, then R is
right AP -injective.

Proof. Let S = R ∝ R. For any 0 ̸= a ∈ R, (0, a) ∈ J(S). So there exists
a left ideal X(0,a) of S such that lSrS(0, a) = S(0, a) ⊕ X(0,a). By the proof
of (1)⇒(2) in Proposition 3.1, if (b, c) ∈ lSrS(0, a) and (m,n) ∈ S(0, a), then
b = 0 and m = 0. So X(0,a) = 0 ∝ Xa, where Xa is a left ideal of R. By
Proposition 3.1 again, we have lRrR(a) = Ra ⊕ Xa, proving that R is right
AP -injective. □
Remark 3.4. We claim that R being right APS-injective can not imply R ∝ R
being right APS-injective. For example, let R = Z be the ring of integers.
Suppose that S = Z ∝ Z is APS-injective, then Z is AP -injective by Corollary
3.3, a contradiction.

For f, g ∈ HomR(R,R), define α = (f, g) such that α(a, b) = (f, g)(a, b) =
(f(a), f(b) + g(a)), where (a, b) ∈ S = R ∝ R. It is easy to check that α ∈
HomS(S, S). Conversely, for any α ∈ HomS(S, S), let α(1, 0) = (p, q). Define
f(1) = p, g(1) = q, then f, g ∈ HomR(R,R) and α = (f, g). In the following
theorem, we shall discuss when R ∝ R is right APS-injective.

Theorem 3.5. Let R be a ring. If, for any a ∈ J(R), b ∈ R, HomR(aR +
brR(a), R) = HomR(R,R) ⊕ X as left R-modules for some submodules X of
HomR(aR+ brR(a), R), then R ∝ R is right APS-injective.

Proof. Let S = R ∝ R and any A ∈ J(S). By Lemma 2.2, it is enough
to show that HomS(AS, S) = HomS(S, S) ⊕ Y for some left S-submodules Y
of HomS(AS, S). Write A = (a, b), then a ∈ J(R), b ∈ R. For any f ∈
HomS(AS, S), say f(A) = (p, q), p, q ∈ R. Define g : aR+ brR(a) → R, ar1 +
br2 7→ pr1 + qr2. If ar1 + br2 = 0, then (a, b)(r2, r1) = (ar2, ar1 + br2) = 0
since ar2 = 0, and hence 0 = f((a, b)(r2, r1)) = (p, q)(r2, r1) = (pr2, pr1 + qr2),
which implies pr1 + qr2 = 0. So g ∈ HomR(aR + brR(a), R). By hypothesis,
g = h ⊕ k, where h ∈ HomR(R,R) and k ∈ X. In particular, p = g(a) =
h(a) + k(a) = h(1)a+ k(a).

If a = 0, then rR(a) = R. So R is right AP -injective. Define l : aR →
R, ar 7→ qr − h(1)br − k(br), r ∈ R. If ar = 0, then r ∈ rR(a), so h(1)br =
h(br) = g(br) − k(br) = qr − k(br), and hence qr − h(1)br − k(br) = 0. Thus,
l ∈ HomR(aR,R). Then l = h′ ⊕ k′, where h′ ∈ HomR(R,R) and k′ ∈ K ⊆
HomR(aR,R). We have q− h(1)b− k(b) = l(a) = h′(a) + k′(a), so q = h(1)b+
k(b)+h′(1)a+k′(a). Then f(A) = (p, q) = (h(1)a+k(a), h(1)b+k(b)+h′(1)a+
k′(a)) = (h(1), h′(1))(a, b) + (k(a), k(b) + k′(a)) = (h, h′)(a, b) + (k, k′)(a, b) =
(h, h′)A+(k, k′)A. Note that (h, h′) ∈ HomS(S, S) and (k, k′) ∈ Y = {(i, j)|i ∈
X, j ∈ K} ⊆ HomS(AS, S), then HomS(AS, S) ⊆ HomS(S, S) + Y . Now we
show that HomS(S, S)∩Y = 0. For any y ∈ HomS(S, S)∩Y , write y = (m,n),
then m ∈ HomR(R,R) ∩X = 0 and n ∈ HomR(R,R) ∩K = 0, proving y = 0.
Therefore, HomS(AS, S) ⊆ HomS(S, S) ⊕ Y . But the other inclusion is clear,
as desired. □
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Following the preceding theorem, we immediately deduce the following corol-
laries.

Corollary 3.6. Let R be a ring. If, for any a, b ∈ R, HomR(aR+brR(a), R) =
HomR(R,R) ⊕ X as left R-modules for some submodules X of HomR(aR +
brR(a), R), then R ∝ R is right AP -injective.

Corollary 3.7. Let R be a ring. If, for any a ∈ J(R), b ∈ R, any R-
homomorphism aR + b · r(a) → R can be extended to R, then R ∝ R is right
PS-injective.

Corollary 3.8. If R is semiprimitive and right AP -injective, then R ∝ R is
right APS-injective.

Remark 3.9. As Remark 3.4, the condition that R is right AP -injective in
Corollary 3.8 can not be omitted.
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