• Title/Summary/Keyword: Sub-threshold transistor

Search Result 55, Processing Time 0.024 seconds

Fabrication of Enclosed-Layout Transistors (ELTs) Through Low-Temperature Deuterium Annealing and Their Electrical Characterizations (저온 중수소 어닐링을 활용한 Enclosed-Layout Transistors (ELTs) 소자의 제작 및 전기적 특성분석)

  • Dong-Hyun Wang;Dong-Ho Kim;Tae-Hyun Kil;Ji-Yeong Yeon;Yong-Sik Kim;Jun-Young Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.43-47
    • /
    • 2024
  • The size of semiconductor devices has been scaled down to improve packing density and output performance. However, there is uncontrollable spreading of the dopants that comprise the well, punch-stop, and channel-stop when using high-temperature annealing processes, such as rapid thermal annealing (RTA). In this context, low-temperature deuterium annealing (LTDA) performed at a low temperature of 300℃ is proposed to reduce the thermal budget during CMOS fabrication. The LTDA effectively eliminates the interface trap in the gate dielectric layer, thereby improving the electrical characteristics of devices, such as threshold voltage (VTH), subthreshold swing (SS), on-state current (ION), and off-state current (IOFF). Moreover, the LTDA is perfectly compatible with CMOS processes.

A Study of SCEs and Analog FOMs in GS-DG-MOSFET with Lateral Asymmetric Channel Doping

  • Sahu, P.K.;Mohapatra, S.K.;Pradhan, K.P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.647-654
    • /
    • 2013
  • The design and analysis of analog circuit application on CMOS technology are a challenge in deep sub-micrometer process. This paper is a study on the performance value of Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with Gate Stack and the channel engineering Single Halo (SH), Double Halo (DH). Four different structures have been analysed keeping channel length constant. The short channel parameters and different sub-threshold analog figures of merit (FOMs) are analysed. This work extensively provides the device structures which may be applicable for high speed switching and low power consumption application.

Correlation between spin density and Vth instability of IGZO thin-film transistors

  • Park, Jee Ho;Lee, Sohyung;Lee, Hee Sung;Kim, Sung Ki;Park, Kwon-Shik;Yoon, Soo-Young
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1447-1450
    • /
    • 2018
  • The electron spin resonance (ESR) detects point defect of the In-Ga-Zn oxide (IGZO) like singly ionized oxygen vacancies and excess oxygen, and get spin density as a parameter of defect state. So, we demonstrated the spin density measurement of the IGZO film with various deposition conditions and it has linear relationship. Moreover, we matched the spin density with the total BTS and the threshold voltage ($V_{th}$) distribution of the IGZO thin film transistors. The total BTS ${\Delta}V_{th}$ and the $V_{th}$ distribution were degraded due to the spin density increases. The spin density is the useful indicator to predict $V_{th}$ instability of IGZO TFTs.

Narrow channel effect on the electrical characteristics of AlGaN/GaN HEMT (AlGaN/GaN HEMT의 채널폭 스케일링에 따른 협폭효과)

  • Lim, Jin Hong;Kim, Jeong Jin;Shim, Kyu Hwan;Yang, Jeon Wook
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2013
  • AlGaN/GaN HEMTs (High electron mobility transistors) with narrow channel were fabricated and the effect of channel scaling on the device were investigated. The devices were fabricated using e-beam lithography to have same channel length of $1{\mu}m$ and various channel width from 0.5 to $9{\mu}m$. The sheet resistance of the channel was increased corresponding to the decrease of channel width and the increase was larger at the width of sub-${\mu}m$. The threshold voltage of the HEMT with $1.6{\mu}m$ and $9{\mu}m$ channel width was -2.85 V. The transistor showed a variation of 50 mV at the width of $0.9{\mu}m$ and the variation 350 mV at $0.5{\mu}m$. The transconductance of 250 mS/mm was decreased to 150 mS/mm corresponding to the decrease of channel width. Also, the gate leakage current of the HEMT decreased with channel width. But the degree of was reduced at the width of sub-${\mu}m$. It was thought that the variation of the electrical characteristics of the HEMT corresponding to the channel width came from the reduced Piezoelectric field of the AlGaN/GaN structure by the strain relief.

Gate length scaling behavior and improved frequency characteristics of In0.8Ga0.2As high-electron-mobility transistor, a core device for sensor and communication applications (센서 및 통신 응용 핵심 소재 In0.8Ga0.2As HEMT 소자의 게이트 길이 스케일링 및 주파수 특성 개선 연구)

  • Jo, Hyeon-Bhin;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.436-440
    • /
    • 2021
  • The impact of the gate length (Lg) on the DC and high-frequency characteristics of indium-rich In0.8Ga0.2As channel high-electron mobility transistors (HEMTs) on a 3-inch InP substrate was inverstigated. HEMTs with a source-to-drain spacing (LSD) of 0.8 ㎛ with different values of Lg ranging from 1 ㎛ to 19 nm were fabricated, and their DC and RF responses were measured and analyzed in detail. In addition, a T-shaped gate with a gate stem height as high as 200 nm was utilized to minimize the parasitic gate capacitance during device fabrication. The threshold voltage (VT) roll-off behavior against Lg was observed clearly, and the maximum transconductance (gm_max) improved as Lg scaled down to 19 nm. In particular, the device with an Lg of 19 nm with an LSD of 0.8 mm exhibited an excellent combination of DC and RF characteristics, such as a gm_max of 2.5 mS/㎛, On resistance (RON) of 261 Ω·㎛, current-gain cutoff frequency (fT) of 738 GHz, and maximum oscillation frequency (fmax) of 492 GHz. The results indicate that the reduction of Lg to 19 nm improves the DC and RF characteristics of InGaAs HEMTs, and a possible increase in the parasitic capacitance component, associated with T-shap, remains negligible in the device architecture.

Improvement of Operating Stabilities in Organic Field-Effect Transistors by Surface Modification on Polymeric Parylene Dielectrics (Parylene 고분자 유전체 표면제어를 통한 OFET의 소자 안정성 향상 연구)

  • Seo, Jungyoon;Oh, Seungteak;Choi, Giheon;Lee, Hwasung
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.91-97
    • /
    • 2021
  • By introducing an organic interlayer on the Parylene C dielectric surface, the electrical device performances and the operating stabilities of organic field-effect transistors (OFETs) were improved. To achieve this goal, hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (ODTS), as the organic interlayer materials, were used to control the surface energy of the Parylene C dielectrics. For the bare case used with the pristine Parylene C dielectrics, the field-effect mobility (μFET) and threshold voltage (Vth) of dinaphtho[2,3-b:2',3'-f ]thieno[3,2-b]- thiophene (DNTT) FET devices were measured at 0.12 cm2V-1s-1 and - 5.23 V, respectively. On the other hand, the OFET devices with HMDS- and ODTS-modified cases showed the improved μFET values of 0.32 and 0.34 cm2V-1s-1, respectively. More important point is that the μFET and Vth of the DNTT FET device with the ODTS-modified Parylene C dielectric presented the smallest changes during a repeated measurement of 1000 times, implying that it has the most stable operating stability. The results could be meaned that the organic interlayer, especially ODTS, effectively covers the Parylene C dielectric surface with alkyl chains and reduces the charge trapping at the interface region between active layer and dielectric, thereby improving the electrical operating stability.

Characterization of Electrical Properties and Gating Effect of Single Wall Carbon Nanotube Field Effect Transistor

  • Heo, Jin-Hee;Kim, Kyo-Hyeok;Chung, Il-Sub
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.169-172
    • /
    • 2008
  • We attempted to fabricate carbon nanotube field effect transistor (CNT-FET) using single walled carbon nanotube(SWNT) on the heavily doped Si substrate used as a bottom gate, source and drain electrode were fabricated bye-beam lithography on the 500 nm thick $SiO_2$ gate dielectric layer. We investigated electrical and physical properties of this CNT-FET using Scanning Probe Microscope(SPM) and conventional method based on tungsten probe tip technique. The gate length of CNT-FET was 600 nm and the diameter of identified SWNT was about 4 nm. We could observed gating effect and typical p-MOS property from the obtained $V_G-I_{DS}$ curve. The threshold voltage of CNT-FET is about -4.6V and transconductance is 47 nS. In the physical aspect, we could identified SWNT with phase mode of SPM which detecting phase shift by force gradient between cantilever tip and sample surface.

The Electrical Characteristics of Low-Temperature Poly-Si Thin-Film Transistors by Different Crystallization Methods

  • Kim, Mun-Su;Jang, Gyeong-Su;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.287.1-287.1
    • /
    • 2014
  • 본 연구에서는 현재 디스플레이에서 가장 널리 이용되는 저온 polycrystalline silicon (poly-Si)의 결정화 방법에 따른 thin-film transistor (TFT)의 전기적 특성을 분석하였다. 분석에 이용된 결정화 방식은 Excimer Laser Annealing (ELA)와 Metal Induced Crystallization (MIC)이다. ELA와 MIC TFTs의 전기적 특성 측정을 통한 분석결과 ELA와 MIC poly-Si TFTs의 전기적 특성 [field-effect mobility (${\mu}_{FE}$), on/off current ratio ($I_{ON}/I_{OFF}$), sub-threshold swing (SS)]은 큰 차이는 없지만, ELA를 이용한 poly-Si TFT의 전기적 특성이 조금 우수하다. 하지만, MIC poly-Si TFT의 경우 threshold voltage ($V_{TH}$)가 0V에 보다 가까울 뿐만 아니라, 전기적 스트레스를 통한 신뢰성 확인 시 ELA poly-Si TFT보다 조금 더 안정적이다. 이는 ELA의 경우 좁은 면에 선형 레이저 빔으로 조사하면서 생기는 hill-lock의 영향으로 표면이 거칠고 균일하지 못하여 바이어스 인가시 생기는 문제이다. 또한 MIC는 금속 촉매를 이용해 결정립 경계를 확장하고 결정 크기를 키워 대면적화에 유리하다. Thermal Stress에서는 (from 293K to 373K) TFT에 점차 높은 온도를 가하자 MIC poly-Si TFT의 경우 off 상태에서 누설 전류 값이 증가하며 열에 민감한 반응을 보이는 것을 확인하였다.

  • PDF

Influence of in-situ remote plasma treatment on characteristics of amorphous indium gallium zinc oxide thin film-based transistors

  • Gang, Tae-Seong;Gu, Ja-Hyeon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.257-257
    • /
    • 2011
  • The amorphous indium-gallium-zinc-oxide (a-IGZO) materials for use in high performance display research fields are strongly investigated due to its good performance, such as high mobility and better transparency. However, the stability of a-IGZO materials is increasingly becoming one of critical issues due to the sub-gap electron trap sites induced by rough interfaces during deposition processing. It is well-known that the threshold voltage shift is related to interface roughness and oxygen vacancy formed by breaking weak chemical bonds. Here, we report the better properties of transparent oxide transistors by reducing the threshold voltage shift with an external rf plasma supported magnetron sputtering system. Mainly, our sputtering method causes the surface of sample to be sleek, so that it prevents the formation of various defects, such as shallow electron trap sites in the interface. External rf power was applied from 0 to 50W during RF sputtering process to enhance the stability of our oxide transistor without having a large voltage shift. To observe the effects of external rf-plasma source on the properties of our devices, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) are carried out to observe surface roughness and morphology of sputtered thin film. In addition, typical electrical properties, such as I-V characteristics are analyzed.

  • PDF

Characteristics of CMOS Transistor using Dual Poly-metal(W/WNx/Poly-Si) Gate Electrode (쌍극 폴리-금속 게이트를 적용한 CMOS 트랜지스터의 특성)

  • 장성근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.233-237
    • /
    • 2002
  • A giga-bit DRAM(dynamic random access memory) technology with W/WNx/poly-Si dual gate electrode is presented in 7his papers. We fabricated $0.16\mu\textrm{m}$ CMOS using this technology and succeeded in suppressing short-channel effects. The saturation current of nMOS and surface-channel pMOS(SC-pMOS) with a $0.16\mu\textrm{m}$ gate was observed 330 $\mu\A/\mu\textrm{m}$ and 100 $\mu\A/\mu\textrm{m}$ respectively. The lower salutation current of SC-pMOS is due to the p-doped poly gate depletion. SC-pMOS shows good DIBL(dram-induced harrier lowering) and sub-threshold characteristics, and there was no boron penetration.