Browse > Article
http://dx.doi.org/10.17702/jai.2021.22.3.91

Improvement of Operating Stabilities in Organic Field-Effect Transistors by Surface Modification on Polymeric Parylene Dielectrics  

Seo, Jungyoon (Department of Materials Science and Chemical Engineering, Hanyang University)
Oh, Seungteak (Department of Materials Science and Chemical Engineering, Hanyang University)
Choi, Giheon (Department of Materials Science and Chemical Engineering, Hanyang University)
Lee, Hwasung (Department of Materials Science and Chemical Engineering, Hanyang University)
Publication Information
Journal of Adhesion and Interface / v.22, no.3, 2021 , pp. 91-97 More about this Journal
Abstract
By introducing an organic interlayer on the Parylene C dielectric surface, the electrical device performances and the operating stabilities of organic field-effect transistors (OFETs) were improved. To achieve this goal, hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (ODTS), as the organic interlayer materials, were used to control the surface energy of the Parylene C dielectrics. For the bare case used with the pristine Parylene C dielectrics, the field-effect mobility (μFET) and threshold voltage (Vth) of dinaphtho[2,3-b:2',3'-f ]thieno[3,2-b]- thiophene (DNTT) FET devices were measured at 0.12 cm2V-1s-1 and - 5.23 V, respectively. On the other hand, the OFET devices with HMDS- and ODTS-modified cases showed the improved μFET values of 0.32 and 0.34 cm2V-1s-1, respectively. More important point is that the μFET and Vth of the DNTT FET device with the ODTS-modified Parylene C dielectric presented the smallest changes during a repeated measurement of 1000 times, implying that it has the most stable operating stability. The results could be meaned that the organic interlayer, especially ODTS, effectively covers the Parylene C dielectric surface with alkyl chains and reduces the charge trapping at the interface region between active layer and dielectric, thereby improving the electrical operating stability.
Keywords
Electrical stability; Polymeric gate dielectric; Parylene C; Self-assembled monolayer; Organic field-effect transistors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Yao, H. Dong, and W. Hu, Adv. Mater., 28, 4513 (2016).   DOI
2 H. Ye, H. J. Kwon, X. Tang, C. E. Park, T. K. An, and S. H. Kim, Org. Electron., 87, 105942 (2020).   DOI
3 X. Li, S. H. Baek, K. H. Kim, H. S. Lee, and S. H. Kim, Org. Electron., 69, 128 (2019).   DOI
4 Y. H. Lee, M. J. Jang, M. Y. Lee, O. Y. Kewon, and J. H. Oh, Chem., 3, 724 (2017).   DOI
5 E. Y. Shin, E. Y. Choi, and Y. Y. Noh, Org. Electron., 46, 14 (2017).   DOI
6 K. H. Kim, J. H. Hong, S. G. Hahm, Y. C. Rho, T. K. An, S. H. Kim, and C. E. Park, ACS Appl. Mater. Interfaces, 11, 13481 (2019).   DOI
7 S. G. Lee and H. H. Choi, JAIK, 20, 162 (2019).
8 H. J. Kwon, H. Ye, T. K. An, J. S. Hong, C. E. Park, Y. S. Choi, S. J. Shin, J. H. Lee, S. H. Kim, and X. Li, Org. Electron., 75, 105391 (2019).   DOI
9 T.K. Rockson, S. H. Baek, H. Y. Jang, G. H. Choi, S. Y. Oh, J. H. Kim, H. W. Cho, S. H. Kim, and H. S. Lee, ACS Appl. Mater. Interfaces, 11, 10108 (2019).   DOI
10 M. J. Kim, S. U. Ryu, S. A. Park, K. W. Choi, T. H. Kim, D. S. Chung, and T. H. Park, Adv. Funct. Mater., 30, 1904545 (2020).   DOI
11 M. Nakano, I. Osaka, and K. Takimiya, Adv. Mater., 29, 1602893 (2016).   DOI
12 H. J. Park, J. M. Kwon, H. J. Ahn, and S. J. Jung, J. Mater. Chem. C, 7, 6251 (2019).   DOI
13 H. J. Park, H. J. Ahn, J. M. Kwon, S. J. Kim, and S. J. Jung, ACS Appl. Mater. Interfaces, 10, 37767 (2018).   DOI
14 S. T. Oh, G . H. Choi, H. W. Cho, J. Y. Ha, Md. R. R. Khan, and H. S. Lee, J. Phys. Chem. C, 124, 161 (2020).   DOI
15 B. B. Patil, Y. Takeda, S. Singh, T. Wang, A. Singh, T. Do, S. P. Singh, S. Tokito, A. K. Pandey, and P. Sonar, Sci. Rep., 10, 19989 (2020).   DOI
16 Y. B. Kim, J. H. Bae, H. W. Song, T. K. An, S. H. Kim, and C. E. Park, ACS Appl. Mater. Interfaces, 9, 39493 (2017).   DOI
17 P. Prisawong, P. Zalar, A. Reuveny, N. Matsuhisa, W. Lee, T. Yokota, and T. Someya, Adv. Mater., 28, 2049 (2016).   DOI
18 T. K. Rockson, S. H. Baek, H. Y. Jang, S. T. Oh, G . H. Choi, H. H. Choi, and H. S. Lee, J. Phys. Chem. C, 122, 17695 (2018).   DOI
19 X. Ren, K. Pei, B. Peng, Z. Zhang, Z. Wang, X. Wang, and P. K. L. Chan, Adv. Mater., 28, 4832 (2016).   DOI
20 X. G u, L. Shaw, K. G u, M. F. Toney, and Z. Bao, Nat. Commun., 9, 534 (2018).   DOI
21 Z. Liu, Z. Yin, S.-C. Chen, S. Dai, J. Huang, and Q. Zheng, Org. Electron., 53, 205 (2018).   DOI
22 D. H. Kwak, Y. N. Seo, J. E. Anthony, S. H. Kim, J. Y. Hur, H. J. Chae, H. J. Park, B. G. Kim, E. H. Lee, S. L. Ko, and W. H. Lee, Adv. Mater. Interfaces, 7, 1901696 (2020).   DOI
23 H. Chen, M. Hurhangee, M. Nikolka, W. Zhang, M. Kirkus, M. Neophytou, S. Cryer, D. Harkin, P. Hayoz, M. Abdi-Jalebi, C. McNeil, H. Sirringhaus, and I. McCulloch, Adv. Mater., 29, 1702523 (2017).   DOI
24 J.T.E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, J. Mater. Chem. C, 5, 8654 (2017).   DOI
25 E. Y. Shin, H. J. Cho, S. W. Jung, C. D. Yang, and Y. Y. Noh, Adv. Funct. Mater., 28, 1704780 (2018).   DOI
26 J. S. Kwon, H. W. Park, D. H. Kim, and Y. J. Kwark, ACS Appl. Mater. Interfaces, 9, 5366 (2017).   DOI
27 N. M. B. Neto, M. D. R. Silva, P. T. Araujo, and R. N. Sampaio, Adv. Mater., 30, 1705052 (2018).   DOI
28 S. Wang, S. Zhou, Y. Tong, Z. Song, H. Wang, Q. Tang, X. Zhao, and Y. Liu, Adv. Mater. Interfaces, 6, 1801984 (2019).   DOI
29 T. Breuer, A. Karthauser, H. Klemm, F. G enuzio, G. Peschel, A. Fuhrich, T. Schmidt, and G. Witte, ACS Appl. Mater. Interfaces, 9, 8384 (2017).   DOI
30 S. Riera-Galindo, F. Leonardi, R. Pfattner, M. Mas-Torrent, Adv. Mater. Technol., 4, 1900104 (2019).   DOI
31 J. Takeya, T. Nishikawa, T. Takenobu, Appl. Phys. Lett., 85, 5078 (2004).   DOI
32 B. Han, P. Wang, H. Jin, Z. Hou, and X. Bai, Phys. Lett. A, 384, 126628 (2020).   DOI
33 J. Zessin, Z. Xu, N. Shin, M. Hambsch, and S. C. B. Mannsfeld, ACS Appl. Mater. Interfaces, 11, 2177 (2019).   DOI
34 G . H. Choi, K. H. Lee, S. T. Oh, J. Y. Seo, C. H. Kim, T. K. An, J. H. Lee, and H. S. Lee, J. Mater. Chem. C, 8, 10010 (2020).   DOI
35 H. J. Park, J. M. Kwon, H. J. Ahn, and S. J. Jung, J. Mater. Chem. C, 7, 6251 (2019).   DOI
36 J. M. Lim and H. H. Choi, JAIK, 21, 129 (2020).
37 S. Casalini, C. A. Bortolotti, F. Leonardi, and F. Biscarini, Chem. Soc. Rev., 46, 40 (2017).   DOI
38 S. Kumar, D. Panigrahi, and A. Dhar, Appl. Surf. Sci., 435, 855 (2018).   DOI
39 J. S. Kim, B. S. Kang, and K. W. Cho, Adv. Funct. Mater., 29, 1806030 (2019).   DOI
40 F. Zhang, E. Mohammadi, X. Luo, J. Strzalka, J. Mei, and Y. Diao, Langmuir, 34, 1109 (2018).   DOI
41 H. Gao, Y. Qiu, J. Feng, S. Li, H. Wang, Y. Zhao, X. Wei, X. Jiang, Y. Su, Y. Wu, and L. Jiang, Nat. Commun., 10, 3912 (2019).   DOI
42 M. Nakano, I. Osaka, and K. Takimiya, Adv. Mater., 29, 1602893 (2017).   DOI
43 H. Chen, W. Zhang, M. Li, G. He, and X. Guo, Chem. Rev., 120, 2879 (2020).   DOI