• Title/Summary/Keyword: Sub-Function

Search Result 2,655, Processing Time 0.033 seconds

A CAMERON-STORVICK THEOREM ON C2a,b[0, T ] WITH APPLICATIONS

  • Choi, Jae Gil;Skoug, David
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.685-704
    • /
    • 2021
  • The purpose of this paper is to establish a very general Cameron-Storvick theorem involving the generalized analytic Feynman integral of functionals on the product function space C2a,b[0, T]. The function space Ca,b[0, T] can be induced by the generalized Brownian motion process associated with continuous functions a and b. To do this we first introduce the class ${\mathcal{F}}^{a,b}_{A_1,A_2}$ of functionals on C2a,b[0, T] which is a generalization of the Kallianpur and Bromley Fresnel class ${\mathcal{F}}_{A_1,A_2}$. We then proceed to establish a Cameron-Storvick theorem on the product function space C2a,b[0, T]. Finally we use our Cameron-Storvick theorem to obtain several meaningful results and examples.

BOUNDS OF HANKEL DETERMINANTS FOR ANALYTIC FUNCTION

  • Ornek, Bulent Nafi
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.699-715
    • /
    • 2020
  • In this paper, we give estimates of the Hankel determinant H2(1) in a novel class 𝓝 (𝜀) of analytical functions in the unit disc. In addition, the relation between the Fekete-Szegö function H2(1) and the module of the angular derivative of the analytical function p(z) at a boundary point b of the unit disk will be given. In this association, the coefficients in the Hankel determinant b2, b3 and b4 will be taken into consideration. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.

A NOTE ON THE BOUNDARY BEHAVIOUR OF THE SQUEEZING FUNCTION AND FRIDMAN INVARIANT

  • Kim, Hyeseon;Mai, Anh Duc;Nguyen, Thi Lan Huong;Ninh, Van Thu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1241-1249
    • /
    • 2020
  • Let Ω be a domain in ℂn. Suppose that ∂Ω is smooth pseudoconvex of D'Angelo finite type near a boundary point ξ0 ∈ ∂Ω and the Levi form has corank at most 1 at ξ0. Our goal is to show that if the squeezing function s(𝜂j) tends to 1 or the Fridman invariant h(𝜂j) tends to 0 for some sequence {𝜂j} ⊂ Ω converging to ξ0, then this point must be strongly pseudoconvex.

BOUNDED FUNCTION ON WHICH INFINITE ITERATIONS OF WEIGHTED BEREZIN TRANSFORM EXIST

  • Jaesung Lee
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.305-311
    • /
    • 2023
  • We exhibit some properties of the weighted Berezin transform Tαf on L(Bn) and on L1(Bn). As the main result, we prove that if f ∈ L(Bn) with limk→∞ Tkαf exists, then there exist unique M-harmonic function g and $h{\in}{\bar{(I-T_{\alpha})L^{\infty}(B_n)}}$ such that f = g + h. We also show that of the norm of weighted Berezin operator Tα on L1(Bn, ν) converges to 1 as α tends to infinity, where ν is an ordinary Lebesgue measure.

APPLICATIONS OF THE SCHWARZ LEMMA RELATED TO BOUNDARY POINTS

  • Bulent Nafi Ornek
    • The Pure and Applied Mathematics
    • /
    • v.30 no.3
    • /
    • pp.337-345
    • /
    • 2023
  • Different versions of the boundary Schwarz lemma for the 𝒩 (𝜌) class are discussed in this study. Also, for the function g(z) = z+b2z2+b3z3+... defined in the unit disc D such that g ∈ 𝒩 (𝜌), we estimate a modulus of the angular derivative of g(z) function at the boundary point 1 ∈ 𝜕D with g'(1) = 1 + 𝜎 (1 - 𝜌), where ${\rho}={\frac{1}{n}}{\sum\limits_{i=1}^{n}}g(c_i)={\frac{g^{\prime}(c_1)+g^{\prime}(c_2)+{\ldots}+g^{\prime}(c_n)}{n}}{\in}g^{\prime}(D)$ and 𝜌≠1, 𝜎 > 1 and c1, c2, ..., cn ∈ 𝜕D. That is, we shall give an estimate below |g"(1)| according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z ≠ 0. Estimating is made by using the arithmetic average of n different derivatives g'(c1), g'(c2), ..., g'(cn).

Reliable Prognostic Cardiopulmonary Function Variables in 110 Patients With Acute Ischemic Heart Disease

  • Lee, Jeong Jae;Park, Chan-hee;You, Joshua (Sung) Hyun
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.200-207
    • /
    • 2022
  • Background: The oxygen uptake efficiency slope (OUES) is the most important index for accurately measuring cardiopulmonary function in patients with acute ischemic heart disease. However, the relationship between the OUES variables and important cardiopulmonary function parameters remain unelucidated for patients with acute ischemic heart disease, which accounts for the largest proportion of heart disease. Objects: The present cross sectional clinical study aimed to determine the multiple relationships among the cardiopulmonary function variables mentioned above in adults with acute ischemic heart disease. Methods: A convenience sample of 110 adult inpatients with ischemic heart disease (age: 57.4 ± 11.3 y; 95 males, 15 females) was enrolled at the hospital cardiac rehabilitation center. The correlation between the important cardiopulmonary function indicators including peak oxygen uptake (VO2 peak), minute ventilation (VE)/carbon dioxide production (VCO2) slope, heart rate recovery (HRR), and ejection fraction (EF) and OUES was confirmed. Results: This study showed that OUES was highly correlated with VO2 peak, VE/VCO2 slope, and HRR parameters. Conclusion: The OUES can be used as an accurate indicator for cardiopulmonary function. There are other factors that influence aerobic capacity besides EF, so there is no correlation with EF. Effective cardiopulmonary rehabilitation programs can be designed based on OUES during submaximal exercise in patients with acute ischemic heart disease.

SOME RADIUS RESULTS OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE SRIVASTAVA-ATTIYA OPERATOR

  • Kim, Yong Chan;Choi, Jae Ho
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.323-329
    • /
    • 2021
  • The main object of the present paper is to investigate some radius results of the functions f(z) = z + Σn=2 anzn(|z| < 1) with |an| ≤ n for all n ∈ ℕ. Some applications for certain operator defined through convolution are also considered.

A RESULT ON AN OPEN PROBLEM OF LÜ, LI AND YANG

  • Majumder, Sujoy;Saha, Somnath
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.915-937
    • /
    • 2021
  • In this paper we deal with the open problem posed by Lü, Li and Yang [10]. In fact, we prove the following result: Let f(z) be a transcendental meromorphic function of finite order having finitely many poles, c1, c2, …, cn ∈ ℂ\{0} and k, n ∈ ℕ. Suppose fn(z), f(z+c1)f(z+c2) ⋯ f(z+cn) share 0 CM and fn(z)-Q1(z), (f(z+c1)f(z+c2) ⋯ f(z+cn))(k) - Q2(z) share (0, 1), where Q1(z) and Q2(z) are non-zero polynomials. If n ≥ k+1, then $(f(z+c_1)f(z+c_2)\;{\cdots}\;f(z+c_n))^{(k)}\;{\equiv}\;{\frac{Q_2(z)}{Q_1(z)}}f^n(z)$. Furthermore, if Q1(z) ≡ Q2(z), then $f(z)=c\;e^{\frac{\lambda}{n}z}$, where c, λ ∈ ℂ \ {0} such that eλ(c1+c2+⋯+cn) = 1 and λk = 1. Also we exhibit some examples to show that the conditions of our result are the best possible.

A Study on the Pole-Q Reduction of Chebyshev Function Using Trade-off (트레이드 오프를 이용한 Chebyshev 함수의 극점-Q 감소에 관한 연구)

  • 윤창훈;최석우
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.79-83
    • /
    • 2000
  • When passband ripple α/sub p/ and stopband attenuation α/sub s/ at the w/sub s/ where the stopband begins are specified in filter design, △α/sub s/ usually exceeds the specification by △α/sub s/ due to the necessity that the order n of the filter function be an integer. In this paper, we apply a trade-off method to remove the excess stopband attenuation △α/sub s/ for reducing the value of pole-Q and improving the characteristics of the Chebyshev filter function. We also apply the trade-off method of pole-Q reduction to the modified Chebyshev function, and then the 4 types of function have been analyzed to compare in frequency and time domain characteristics. The trade-off method reduces the pole-Q which influences the filter characteristics to maximum 49.6% without increase of the order n. Thus implies that they have the improved characteristics such as the reduced passband ripple and flatter delay characteristics as compared Chebyshev filter function before trade-off. And the unit step response shows shorter delay time and settling time in time domain performance.

  • PDF