DOI QR코드

DOI QR Code

APPLICATIONS OF THE SCHWARZ LEMMA RELATED TO BOUNDARY POINTS

  • Received : 2022.10.18
  • Accepted : 2023.06.05
  • Published : 2023.08.31

Abstract

Different versions of the boundary Schwarz lemma for the 𝒩 (𝜌) class are discussed in this study. Also, for the function g(z) = z+b2z2+b3z3+... defined in the unit disc D such that g ∈ 𝒩 (𝜌), we estimate a modulus of the angular derivative of g(z) function at the boundary point 1 ∈ 𝜕D with g'(1) = 1 + 𝜎 (1 - 𝜌), where ${\rho}={\frac{1}{n}}{\sum\limits_{i=1}^{n}}g(c_i)={\frac{g^{\prime}(c_1)+g^{\prime}(c_2)+{\ldots}+g^{\prime}(c_n)}{n}}{\in}g^{\prime}(D)$ and 𝜌≠1, 𝜎 > 1 and c1, c2, ..., cn ∈ 𝜕D. That is, we shall give an estimate below |g"(1)| according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z ≠ 0. Estimating is made by using the arithmetic average of n different derivatives g'(c1), g'(c2), ..., g'(cn).

Keywords

References

  1. T. Akyel & B. N. Ornek: Some Remarks on Schwarz lemma at the boundary. Filomat 31 (2017), no. 13, 4139-4151. https://doi.org/10.2298/FIL1713139A
  2. T. A. Azeroglu & B. N. Ornek: A refined Schwarz inequality on the boundary. Complex Variab. Elliptic Equa. 58 (2013) 571-577. https://doi.org/10.1080/17476933.2012.718338
  3. H.P. Boas: Julius & Julia: Mastering the Art of the Schwarz lemma. Amer. Math. Monthly 117 (2010) 770-785. https://doi.org/10.4169/000298910x521643
  4. V.N. Dubinin: The Schwarz inequality on the boundary for functions regular in the disc. J. Math. Sci. 122 (2004) 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. G.M. Golusin: Geometric Theory of Functions of Complex Variable [in Russian]. 2nd edn., Moscow 1966.
  6. I.S. Jack: Functions starlike and convex of order α. J. London Math. Soc. 3 (1971) 469-474. https://doi.org/10.1112/jlms/s2-3.3.469
  7. M. Mateljevic, N. Mutavdzc & B.N. Ornek: Note on Some Classes of Holomorphic Functions Related to Jack's and Schwarz's Lemma. Appl. Anal. Discrete Math. 16 (2022), 111-131. https://doi.org/10.2298/AADM200319006M
  8. P.R. Mercer: Sharpened Versions of the Schwarz Lemma. Journal of Mathematical Analysis and Applications. 205 (1997) 508-511. https://doi.org/10.1006/jmaa.1997.5217
  9. P.R. Mercer: Boundary Schwarz inequalities arising from Rogosinski's lemma. Journal of Classical Analysis 12 (2018) 93-97. https://doi.org/10.7153/jca-2018-12-08
  10. P.R. Mercer: An improved Schwarz Lemma at the boundary. Open Mathematics 16 (2018) 1140-1144. https://doi.org/10.1515/math-2018-0096
  11. S.S. Miller & P.T. Mocanu: Second-order differential inequalities in the complex plane. J. Math. Anal. Appl. 65(1978), 289-305. https://doi.org/10.10160022-247X(78)90181-6 https://doi.org/10.10160022-247X(78)90181-6
  12. R. Osserman: A sharp Schwarz inequality on the boundary. Proc. Amer. Math. Soc. 128 (2000) 3513-3517. https://doi.org/10.48550/arXiv.math/9712280
  13. B.N. Ornek: On a class of analytic function related to Schwarz lemma. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 29 (2022), no. 1, 113-124. https://doi.org/10.7468/jksmeb.2022.29.1.113
  14. B.N. Ornek & T. Duzenli: Boundary Analysis for the Derivative of Driving Point Impedance Functions. IEEE Transactions on Circuits and Systems II: Express Briefs 65 (2018), no. 9, 1149-1153. https://doi.org/10.1109/TCSII.2018.2809539
  15. Ch. Pommerenke: Boundary Behaviour of Conformal Maps. Springer-Verlag, Berlin. 1992.
  16. H. Unkelbach: Uber die Randverzerrung bei konformer Abbildung. Math. Z. 43 (1938), 739-742. https://doi.org/10.1007/BF01181115