• Title/Summary/Keyword: Stieltjes integral.

Search Result 54, Processing Time 0.025 seconds

On the continuity of the map induced by scalar-input control system

  • Shin, Chang-Eon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.695-706
    • /
    • 1996
  • In the control system $ \dot{x} = f(t,x(t)) + g(t,x(t))\dot{u}, x(0) = \bar{x}, t \in [0,T], $ this paper shows that the map from u with $L^1(m)$-topology to $x_u$ with $L^1(\mu)$-topology is Lipschitz continuous where f is $C^1$, $\mu$ is the Stieltjes measure derived from the function g which is not smooth in the variable t and $x_u$ is the solution of the above system corresponding to u under the assumption that $\dot{u}$ is bounded.

  • PDF

A BANACH ALGEBRA OF SERIES OF FUNCTIONS OVER PATHS

  • Cho, Dong Hyun;Kwon, Mo A
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.445-463
    • /
    • 2019
  • Let C[0, T] denote the space of continuous real-valued functions on [0, T]. On the space C[0, T], we introduce a Banach algebra of series of functions which are generalized Fourier-Stieltjes transforms of measures of finite variation on the product of simplex and Euclidean space. We evaluate analytic Feynman integrals of the functions in the Banach algebra which play significant roles in the Feynman integration theory and quantum mechanics.

GOLDEN RATIO RIESZ-NÁGY-TAKÁCS DISTRIBUTION

  • Baek, In-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.247-252
    • /
    • 2011
  • We study some properties of the Riemann-Stieltjes integrals with respect to the Riesz-$N\acute{a}gy$-$Tak\acute{a}cs$ distribution $H_{a,p}$ and its inverse $H_{p,a}$ on the unit interval satisfying the equation 1 - a = $a^2$ and p = 1 - a. Using the properties of the dual distributions $H_{a,p}$ and $H_{p,a}$, we compare the Riemann-Stieltjes integrals of $H_{a,p}$ over some essential intervals with that of its inverse $H_{p,a}$ over the related intervals.

Lebesgue-Stieltjes Measures and Differentiation of Measures

  • Jeon, Won-Kee
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.51-74
    • /
    • 1986
  • The thery of measure is significant in that we extend from it to the theory of integration. AS specific metric outer measures we can take Hausdorff outer measure and Lebesgue-Stieltjes outer measure connecting measure with monotone functions.([12]) The purpose of this paper is to find some properties of Lebesgue-Stieltjes measure by extending it from $R^1$ to $R^n(n{\geq}1)$ $({\S}3)$ and differentiation of the integral defined by Borel measure $({\S}4)$. If in detail, as follows. We proved that if $_n{\lambda}_{f}^{\ast}$ is Lebesgue-Stieltjes outer measure defined on a finite monotone increasing function $f:R{\rightarrow}R$ with the right continuity, then $$_n{\lambda}_{f}^{\ast}(I)=\prod_{j=1}^{n}(f(b_j)-f(a_j))$$, where $I={(x_1,...,x_n){\mid}a_j$<$x_j{\leq}b_j,\;j=1,...,n}$. (Theorem 3.6). We've reached the conclusion of an extension of Lebesgue Differentiation Theorem in the course of proving that the class of continuous function on $R^n$ with compact support is dense in $L^p(d{\mu})$ ($1{\leq$}p<$\infty$) (Proposition 2.4). That is, if f is locally $\mu$-integrable on $R^n$, then $\lim_{h\to\0}\left(\frac{1}{{\mu}(Q_x(h))}\right)\int_{Qx(h)}f\;d{\mu}=f(x)\;a.e.(\mu)$.

  • PDF

SOME INTEGRAL TRANSFORMS INVOLVING EXTENDED GENERALIZED GAUSS HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Kachhia, Krunal B.;Prajapati, Jyotindra C.;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.779-790
    • /
    • 2016
  • Using the extended generalized integral transform given by Luo et al. [6], we introduce some new generalized integral transforms to investigate such their (potentially) useful properties as inversion formulas and Parseval-Goldstein type relations. Classical integral transforms including (for example) Laplace, Stieltjes, and Widder-Potential transforms are seen to follow as special cases of the newly-introduced integral transforms.

THE ANALYTIC FEYNMAN INTEGRAL OVER PATHS ON ABSTRACT WIENER SPACE

  • Yoo, Il
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.93-107
    • /
    • 1995
  • In their paper [2,3], Cameron and Storvick introduced some classes $S"+m$ and of functionals on classical Wiener spaces $C_0[a,b]$. For such functionals, they showed that the analytic Feynman integral exists and they gave some formulas for this integral. Moreover they obtained that the functionals of the form $$ (1.1) F(x) = exp {\int^b_a{\theta(s,x(x))dx} $$ are in S" where they assumbed that the potential $\delta : [a,b] \times R \to C$ satisfies (i) for each $s \in [a,b], \theta(s,\cdot)$ is the Fourier-Stieltjes transform of $\sigma_s \in M(R)$, (ii) for each Borel subset E of $[a,b] \times R, \sigma_s (E^{(s)})$ is a Borel measurable function of s on [a,b], and (iii) the total variation $\Vert \sigma_s \Vert$ of $\sigma_s$ is bounded as a function of s.tion of s.

  • PDF

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.