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‘Abstract

The thery of measure is significant in that we extend from it to the theory of
integration.

As specific metric outer measures we can take Hausdorff outer measure and Le-
besgue-Stieltjes outer measure connecting measure with monotone functions. ((12))

The purpose of this paper is to find some properties-of Lebesgue-Stieltjes measure
by extending it from R’ to R*(s>1) ( §3) and differentiation of the integral defined
by Borel measure ( § 4).

If in detail, as follows.

We proved that if .17 is Lebesgue-Stieltjes outer measure defined on a finite
monotone increasing function f: R—— R with the right continuity, then A7 ()=

}!;[I(f(bl)’“f(ai))r Where I"": {(xlo LK) axn)sal<xigbiv ]:11 LIS ’”}- (Theofem 3 -6).
We've reached the conclusion of an extension of Lebesgue Differentiation The-
orem in the course of proving that the class of continuous function on R" with compact
support is dense in L*(dyu) (1< p<<oo) (Proposition 2.4).
That is, if f is locally u-integrable on R", then

. 1 - :
Jim m@'ﬂ7m~fox<h)f du=f(x) a.e.(p).
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1. Intreduction

The theory of measure is significant in that we extend from it to the theory of
integration,

In this sense, P. Halmos defined the measure on Hausdorff space ([5]) and L.
Schwartz developed the theory of integration from the measure defined on the local
convex linear space ([11]).

In [7] and [14], we can also find Lebesgue integral of the function with its value
on Banach space. As the specific metric outer measures we can take Hasudorff outer

measure and Lebesgue-Stieltjes outer measure connecting measures with monotone fun-
ctions([121).

The purpose of this paper is to find some properties of Lebesgue-Stielties measure
by extending it from R’ to R"(»>1) (83) and differentiation of the integral defined
by Borel measure ( §4).

If we describe the contents of this paper, it is as follows:

In §2, we described the definition of some terms and basic properties to help under-
stand the theory of §3 and §4.

We proved that the class of continuous function on R with compact support is.
dense in L*(da) (1< p<eo) (Proposition 2.4). ’

In §3, we evolved Lebesgue-Stieltjes measure on R™ (Definition 3.1) and we proved
that if .2 is Lebesgue-Stieltjes outher measure defined on a finite monotone increasing
function f: R— R with the right continuity, then A% (I)z-JIZ(f(b,)-—f(a,)), where
I={xy, ..., % 0;<2;<by, j=1,...,m}. (Theorem 3.6).

We also proved that every Borel measure # on R™ such that its value is finite on
each bounded Borel set is regular (Lemma 4.2).

Finally we proved in the Theorem 4.4 that if f is locally x-integrable on R®, then

. 1 -
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2. Preliminaries

Let & be an arhitrary set and #(%) be the collection of  all subsets of . A

function I': 2(¥)— R(R: reals) is called an owter measure if it satisfies the following
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conditions:

(a) I'(9)=0, {(¢: null set).

(b) F(ANKT(Ay) if AT A; in P(&).

() I'(1J A< ZZr(A,) for any countable collection of sets {A,} in #(¥).

For an outer measure /': #(¥)— R, Ec=#(¥) is said to be I'~measurable, or
simply measurable, if for every AS#(¥)

I'(A)=r(ANE)+T(A-E).

If £ is a measurable set, then I"(E)is called its I'-measure or simply measure. The
following properties have been already proved ([13,[5],[12], 137, [151).

Property 2.1. Let I': #(¥)— R be an outer measure.

(i) The family of all /'-measurable subsets forms a o-algebra.

(ii) If {E,) is a countable collection of disjoint I'-measurable subsets, then F(UF)
=3I (EW). /7!

Let us assume that & is a metric space with metric . The distance between A,
and A; in #(¥) is defined by

d( A1, As)=inf{d(%;, %2) |2, EA,, 25 4,).

Let I': #(¥)— R be an outer measure. Then I’ is called a Carathéodory outer

measure Or a melric outer measure if
F{A;UA) =T (A;))+ T (A;) whenever d(A;, A)>0.

We have the following ([4],[83,[10],[14D).

Property 2.2. Let " be a metric outer measure on & metric space . Then
(i) Every Borel subset of ¥ is I'-measurable,
(ii) Every semi-continuous function defined on % is /'-measurable (i.e., for every

real number a the set {x€=¥|f(x)>a) is I'-measurable). ///

We again assume that & is an arbitrary set and consider an algebra « in 2(%).
For an algebra & a function 1: &#/— R is called a measure if it satisfies the

conditions:
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(@) VAo 2(4)=0, A($)=0.
(b) If {A,} is a countable collection of disjoint sets in & and |JA.€=«, then

AU AN =Z2T2(A0)-

Note that if an algebra & is a ¢-algebra, then a measure defined on « is a usual
measure.

A measure A on & is said to be g-fimite with respect to & if ¥ can be written as
¥=1J8, with S, and 1(S;)<eo. If 1 is a measure on o and x a measure on a o-
algebra T containing & such that for every Ao p(A)=21(A), then u is said to be
an extension of 1 to X.

Let A be a measure on an algebra o defined on ». Then, since Y&, every subset
A of ¥ is covered by a countable collection {4;) in .

We define 1*: #(&)— R by ‘

(2—1) A*(A)= inf{ (A | S, ACU AL

for each A=#(¥). Then the following holds ([8],(127).

Property 2.3. Let 1 be a measure on & in #(¥) and i* a set function defined by
{2—1). Then

(i) A* is an outer measure such that A(A4)=2%(A4) for all Acs«. Moreover, every
Ao is A*-measurable.

(ii) Let a* be the g-algebra of A®-measurable sets. If 1 is g-finite with respect to
o, and if X is any o-algebra with #CI5Co*, then A* is the only measure on 7
which .is an extension of 2 (Carathéodory-Hahn Extension Theorem). /7

Let 3 be the g-algebra consisting of all Borel sets in R", A measure defined on T
is called a Borel measure on R®. Let u: Y— R be a Borel measure on R®. u is said
to be regular if for every Borel set EC_R"

#(E)=inf{u(G)|G: open in R, ECG}.

This means that given €>>0 there exists an open set G such that u(G)<<u(E)+e or
wG—E)<e.

For a u-measurable function f: R"™—~— R if
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fmlfl’dﬂ<+oo (0<p<+00),

then f is said to be u(p)-integrable.
Let us put

L*dp)y={f: R"—R|f is u(p)-integrable}.
For feLt(dy) the u(p)-norm || fils of f is defined by
1A=t [ gl F12 )

Then, as is well-known, L*(du) is a Banach space with u(p)-norm.. In particular, for
S, gEL*(dy) with 1< p<eo

(2—2) ILf+glle<<US U+ liglls (031,073,090, [14D).

Proposition 2.4. Let u be a regular Borel measure on B", and let Co(R") be the
class of continuous functions on R" with compact support. Then, Co(R") is dense in
Lt(dp), 1< p<oo.

Proof. We want to prove that for each f&L*(du) there exists a sequence {c,;} in
Co(R") such that

JR,,lf‘“CAl’dﬂ"-"*O a8 ko0,

In this case we say that f satisfies the property @, Our proof is devided into three
steps.
Step 1. When f; and f; in L*(dy) satisfy the property %, sodo f;+f; and ay,

where a is a constant. Assume that
J’R,.lfl"‘cal'——"O, ’[Rnlfz“fﬂ'*"“"*() as  k——oo,

where {c;} and {c,’} are sequences in Co(R").
Since ¢, and ¢,/ are in L*(dy) for k=1,2,..., fi—ci and fr—c¢,’ are in L*(du).
Thus

([l Crrf =t M if malnE el st
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Therefore we have the following:
tim[ | (itf = Gre)<hmt([ 1= alF +(] ih=atinty

=(Qim| el +0im[ ) fa-arin®y
=0

which means that f;+f; satisfies the property 9, because that c,+c,” is in Co(R").
For a constant a if

IRfo"'Czl"*—‘*O.
then
[ plefimanlr=tai?f ficil*—o.

Therefore af; satiafies the property 9. ’
Step I. If for a sequence (fi} such that ficsL*(du) satisfying the property 9
(k=1|2a"*)'

IR,,lf—%l'm»o 88 k— o0,
then f satisfies the property @. Since
U, —Aalls+ 11 slls
and [[£alls, If —Aills<oo we have
[ gl P17 =lA <.

i
That is, feL#(dp). Take a function fu, in (f3} such that [|f —fi,ll<—s

2
£>0. Then, by our assumption there exists ¢€=C,(R")
such that

for arbitrary

1
fora
[1fap—ells< 5

Hence
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B —clle UL~ Faglla + 11 frg—clis)®
d 1]
<(~%f«+ ——8;)'

:8,

which implies that f satisfies the property 9.

Step H. For fe=L*(dp), writting f=f*—f-, we may assume that f>0. Since
every function can be written as the limit of a sequénce {fi} of simple functions, we
may regard f as a non-negative simple function which is- g-integrable. By definition
of simple function and Step | we may also assume that f is a characteristic function

¥ with g(E)<ee (ECR™). By our hypothesis, since u is regular, there exists an

1,
open set GZR" such that u(G—~E)<e* for an arbitrary positive number €. Then
[ ol to— el dr= (G~ EN* <,

80, in order to prove our Proposition it suffices to show that for an open set G with
p(G)<oo, f=Yx, satisfies the property @. We have to note that there is a covering
G=1JI, of balf-open intervals in R" which are digjoint.

¥
Let us fy be the characteristic function of lUlI %

Since p(G)= éy(h) Loa,

[ ol v =22 (1)t —0.

Hence, by Step @I it is enough to prove that fy satisfies the property 2. Thus it
suffices to prove that the characteristic function ¥; of an half-open interval I satisfies
the proper ty 9. By the regularity of x4 there exists an open interval I* such that the

1
closure of I is contained in I* (i.e., J<ZI*) and p(I*-I)<e? . By Urysohn's Lem-

- ma, there is a continuous function ¢ with 0<{c<{1 such that

1 x&=l
c(x)=
0 xs=CI*
In consequence,
Inn (Xi—eifdp(p(I* -1 <6, /17
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3. Lebesgue-Stieltjes Measure

In the future of this paper, by a half-open interval J in R” we mean a left open

interval, i.e.,
1={(xh~'~¢xu)ERnlai<x!gb<h jr’lt"')”}’

Let f: R— R be a finite monotone increasing function. For a half-open interval J
we put

D =2N=1(f ) ~1(a).

Note that R” is covered by a countable union of half-open intervals in R™.

Definition 3.1, The Lebesgue-Sticltjes outer measure ,A} corresponding to f in R"
is defined by

s (A)=infZ2A(14)

for ACR", where the inf is taken over all countable collections of balf-open intervals
I, which covers A.

Further define
,,X; (¢) =0.

Proposition 3.2 ., is a metric outer measure.

Proof. By (i) of property 2.3 ,47 .is an outer measure, but we have apother proof
as follows.

It is clear that for each ACR™ A/ (4)=>0.

Since for A, and 4. in R" with A,CA,; AUl implies that A, U1, by
Definition 3.1

Af (A)<SinfZ22(15),

where AU, and 1= {(x,... nx,alai‘<x1£bi'. j=1,...,n}. Thus u;‘: (AJ)S-R: (Az).
To show that ,A° is subadditive, let {A4;} be a collection of nonempty subsets of
R" and A=1}A4,.
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Choose half-open: intervals {[;}} such that
AC L, AL <22 (A +e2 .
Nothing AC‘L'JzI xt it follows that
AL (A)S;%l(h‘)gil:(d}' (Az)+82*‘)=‘$,.27 (A)+s,

Where Ikl: {(xl"' "xn)‘alhl<xigbi.’lu j::llZy .. 'ln} (kzlyzl . ")'

Since € is arbitrary

and thus ,A/ is an outer measure.

In order to prove that ,A} is a metric outer measure, let d(A;, A))=36>0 for A,
and A, in R".

1t is enough to prove that

ahs (A1l A) =47 (A)+ .47 (4s).

We see that there exists a covering 4, A4; 1, such that

@) Li={(x1,...,5)|a*<x,<b,%, bp—a*< ‘;d;‘. F=l..,n),
(b) EI(IL)SMJ: (Al U AB) +€, V6>0'
Since I, splits into two coverings, one of A; and other of A,, it follows that

adé (AD+ A8 (AN Z0MIL) <47 (AU As) +8,
and thus
A8 (AD+.27 (A <48 (AilUA:) a8 6—0. ‘ 7
We shall set
A={ATR"| A is A4 -measurable}.

Then, by (i) of property 2.1, « isa o-algebra and .1 |« is a measure which is
<alled the Lebesgue-Stieltjes measure corresponding to f.

-—_ 59 -
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Propositoin 3.3. Let A be any subset of R contained in an open subset G of R",
and let

A={(sSAld(x, COI 24} (h=1,2,...).

Then {i_g._l.l,’ (A) =, (A).

Proof. Since 4,1 A and (JA,=A4, by Definition 3.1 it is obvious that lim, A (A;)
Leds (A). E
The opposite inequality is proved as follows. Let

Di=Al+l"Al (k=192:- .. )-
Then A=A;UD§UDA+1Ut-»y and thus
-1 nds (A)AS (A + A2 (D3) +u48 (Dasd+. v

If 325,47 (Dy)<+oo, then ;5,..2}' (D;)——0 as k—> oo, Therefore, by (3—1) we
get our desired result:

A7 (A)<him, 27 (As).

If 32,47 (D) =+o0, then at least one of 22047 (D) and 32,2 (Dyy4) is infinite.
Thus, we can choose N such that

A (Du)+ 227 (Dy-2) + 248 (Dp-g) +...

is arbitrary large. Since

d(Ds-ss Dars) 25ty >0,
by (ii) of property 2.1

wAe (DyUDy-3U- . ) =022 (D) +,42 (Dy-2) +...
However, the fact that DyUUDy-:l)...CC Ay A implies that

whs (Ans) 228 (DyUDyg-3U...)
2,1;* (DH) +n2: (Dg-‘)‘f-. .
>M '
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for any sufficiently large number M >>0. That is,
lim 47 (Ay) =co=,} (4). /1/

Proposition 3.4. (i) Every Borel set in B" is ',i; -meagurable.

(ii) ,A{ is a regular outer measure,

Proof. (i) It is clear that (i) is true by (i) of propetty 2.2, but we have another
proof as follows. It will suffice to prove that every closed subset of B" is 4 -mea-
surable, because that every closed subset is contained in & means that the Borel o-

algebra } is contained in .
Let F be a closed subset of R". We have to prove that

it (AUB)=,48 (A)+,.4] (B)
for all ACCF and BCF. Put
Av={r=A]d(x, F) >4,
then d(B, A,);z%—>0. Hence we have
nAf (AUB) 227 (AUB) =47 (As) 4,47 (B).
By proposition 3.3

AP (AUB)ZLimaAT (L) +.27 (B)
=27 (4,27 (B).

Since it is ovious that A7 (AB)Y<, At (A)+.47 (B), we get
nhs (AUB) =47 (A) +.47 (B).

(ii) We want to prove that for each subset A of R” there exists a Borel set B in
R" such that A8 and A7 (A)=,2"(B). Take a covering A |JI,' such that for a
&

given >0

Z2A A7 (A) e
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Let us put
B,m{hjl,‘ and B::(]B,,
then ACB, .4/ (B;)gZﬁL‘Z(!ﬁ)éJ}' (A)+e
and A5 (B)<aAs (B)X.AF (A) +e.
That is, wAs (B)=,278 (A). 17/

Lemma 3.5. If f is a finite monotone increasing function which is continuous from

the right, then
1A ((a,8]) =f(b)—f(a)
and 147 ({a})=f(a)~f(a~),

where f(a—-)zlhig: fla—Fk) (h>0) and —ocoal+o0,

Proof. It is clear that ;4] ((a, ) <A((a, b)) =f(b)—f(a) by Definition 3, 1. In order
to prove the opposite inequality, suppose that

(a, 61 Ulas, 82l

Given £2>0 use the right continuity of f to choose {4’} such that
Bi<by’ and S0 >F (")~ 2

Take a’ svch that a<a’<(8, then

[a’, b3 U (s 47D

By the compactness of [a’,b] there exists a positive integer N such that

|N

[a’sb]C‘LJJ (a,hbb’)-

By discarding unnecessary (a;, 5,’) and reindexing the rest, we can assume that

QG 1<b’, k=1,...,N—1, a;<a’ and b<(by’, Thus we have

fla < fa), f(B)<Sf(by') and so on.
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In this case,
N . N
S22(an BN 2204 ba]) = 220 () = F(@n))

= 1) =@+ (O ~F @),
Flbn)=F(ary= (f )= F(8' )+ (S (')~ Fa)

>—=e27"+ (f (&)~ f(a'))
>—e+f(8)—f(a).
Since f(by') —f(as41) =0,
N-1 N-1 N-1
g‘;(f(ba’)—-f(am)) = gg(f(ba)*f(ba’))+§ (f(bn’)~f(aa+;))
»L‘ ”.bg» - :
2‘2’07( 2. 8‘
‘Thus we have
LA(@n b)) 2~ 26+1(0) - f(a).
Letting e— 0 and a’—a it follows that

ZA(a, b2 (B —f(@) 2 S () —f(a)=24((a,b]).

This means that ;4 ((2,5])>2((a,b]) by Definition 3.1.
The second statement is proved by seiting

{gy—(a—h,a]l (A>0),

That s, ;47 ({a})=infa((a—h,a])
=inf(f(a)~/(a~ k)
=lim(f (@) —~f(a—h))

h>0
=f(a)—f(a—).

Since (—oo,a] is covered by a countable union of disjoint half-open intervals, we

have

('* o, (13: U (aln bt]
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and
128 ((—o0,a]) =224((as, 1)) = Z5( S (Ba) — f(as)).

We shall prove the following theorem by mathematical induction,

Theorem 3.6. Let f: R—- R be a finite monotone increasing function with the

right continuity. Then
A (D=A(D) and A7 ((aD) =IE(f(a)—Fla;-)),

where J is & bounded half-open interval in B" and a=(ay,...,4a,).

Proof. We have already proved that our assertion is true in R'(Lemma 3.5).

We assume that for all half-open intervals I" in R"(r=1,...,#=1) our theorem
holds.

Take a half-open interval

IP={(%1 ..., 8 ;<2805 F=1,.0.,0}

and consider a covering of I" such that
rcgnrcy.

where
IP= (2150 .., 2,) |82 <5, 0,4 F=1,...,8}

and J is a bounded half-open interval. Since I" covers itself,
e (IM)=inf Z52(L") A7),

In order to prove the opposite inequality, we shall put

F={0"k=1,2...}

and

Si={l"Eesth 26.).
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We also put
In-x(bn) = ((xlv (AR lxu)lai<xif‘;bh xn:bn; ]‘:ly s 9”""1}

and

Ii“—x(bn) = ((xh e rxn)lai.<xigblh! x,,:b,., ]zl’ se e nn""‘l}r
then it is clear that
I""(bu)CI{.JUk""(bn)ul.”eiyx}-

If we regard I™-(4,) and I,"-*(4,) (k=1,2,...) as half-open intervals in RB*/,
then

A S G e )

by our inductive hypothesis, (In fact, since we identify {(x;,...,x.-1)]a,<x;<b;,
J=1,...,m—1} with 2(I["-1(5,)),

A0 =TL(F () ~F(a),
and also

I =T M —fa).
Since A(I"y<co, we may assume that

2o AL <o
L=y

and also that
UM EN LSS <o,
Given €2>0, reindexing if necessary, we can write as

N
LGSO ES ={V A ORI AT R EaE A

where M>f(b,)—f(a,). Let us put

- 65 -
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_9’3::{[,",,,,,]""1}(:_9",

and

. N
a,)=min{a’,...,a, '}.

It follows that

IO CMEY ((CAN M)

SIS 0) 2 (@ BIDIIES ) +—E @b,
We make new half-open intervals ‘I,*(k=1,...,N;) such that
L= (x5, ) 840 <2,<b, F=1,000,8~], a2 <2,5a0)
Note that if we put

’Ii’l:{(xh"-axn)!aib<xl$bjb’ j=1n“l”""lv au‘<xusbu‘}'

then
3—2) Lr="LJ'L" and ‘I, =¢.
‘Suppose that

Sy=(S—= DY LI 9)
and

y‘z {Ikiﬁey."aungﬁ“}'
For the half-open interval
I i@, )= {(%gye oo s Bad @i <u; Kby, F=10. . y8—1, X =a,l}

and

I.h.'"-l(anl) = {(xh co. !xu)lalli<xigbjhi: jxln v ’n‘”lt xnzau,})
I"Ha Y UL Ha ) L"E )
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and that there exists a positive integer N, such that

N
X(I""(a,.‘))g,z;g,-:U(In""‘(a..’))i«fu"@y‘}* Hs :
We also put

L= {Ib,"n vey Iﬂhx,}

at=min{a,M,...,a,. ).
It follows that
1(1""(“#)) 'l((t}!.,’, a,'])
IR @) A @A BIDILSE 740 +Eil(ad,alD.
Note that 2(I*-*(a,’))=A(I""(b.))

=TH(f )~ Fan).

Repeating this way, there is a positive integers / and N such that

(a) a,=a,}

N
(b) 1(1""(“-3'1))'1((61.,“,."'])ﬂ:{?l(lh"’(an!"))'M(ﬁubnh'])

+ A ((@wat 1),

where I,.,"z{(x,,..;,x,)fa;"‘<x,-gb,h‘, F=1yeeaym~1, a,.*‘<x..<,;a,,"‘, a,2a,"'} for
t=1,...,N.

In consequence, we get the following:

AA%1(B,)) 2@, .0) + s + AU (@) A (an @ 1T)
N N ’
s?—-":,u."-’(b,))-z((a,’,b::i) Fee DAL @) A b2 D)

i () ~S(an)).
That is

A< 350 AL +e.
)=y
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Note that as in (3—2) if 1,"="1,"{J"1,",
then A(1,")=2(C"1,")+2("1,"). Therefore,

I’ 1JI," means that A(I,,)gz‘;h:/l(l.‘)ﬁ.ilf .
Consequently,
nAe (IM)y=2(I) =E(f(b;) —f(a;)).

Next set {a} I, Ii={(x1,...,2,) | a;—h;<x;<a;, b;>0).
Then 47 ({a})=inf A(L;) =inf TL(f(a;)—f(a,~k,))
h>0 hy>0 jnl

=lim F1(7 (@) ~ @~ ))=T1(f (@)~ F(a-). W

4. Relative Differentiation of Measures

Let X be the Borel g-algebra of R, and let (R", X, %) be a Borel measure space.
A function f: B"—— R is said to be u-imtegrable on R" if I . f dy is defined and its
value is finite. A u-measurable function defined on R" is called a locally p-integrable
Junction on R" if it is u-integrable over every bounded Borel set in R".

In this section we shall prove that if f is locally u-integrable on R” and for x&=R"
0<u(Q:(4)), then

s : 1 i
i‘ﬂ‘qu_mf du=f(x) a.e.(n),

where Q.(k) is an n-dimensional cube centered at x with edges parallel to the coordi-
nate axes and with edge length /4, which is an extension of the Lebesgue's Differentia-
tion Theorem ([3],[11],(12],[15]).

Specifically, let # and v be two o-finite Borel measures defined on Y. We shall
also prove some properties with respect to v(Q,(4))/u(Q.(4)) (4>>0) in this section.
In order to do these we need the f olleing Besicovitch Covering Lemma ([12]): For a
bounded subset £ of R" and a family of cubes covering E which contains a cube Q,
with center at x&FE, then there exist points {x,}C=E such that

(1) EC|)Qu,-
(ii) {Q.,} has bounded overlaps.
(iii) the constant ¢ for which 32y,,,<c can be choosen to depend only on ».
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Lemma 4.1 Let £ and v be two Borel measures defined on the Borel o-algebra T
of R" which are finite and equal on every balf-open- interval {x;,...,x,|a;<x;<b;,
j=1,...,m}. Then for each B}, u(B)=v(B).

Proef. Suppose that the algebra o generated by all half-open intervals in R”, i.e.,
& contains @, R™ and all intervals form {(%;,...,%,)| —co<la;<<b;, F=1,...,8}

and

{(xh~'~txn)la}<xi<+°°’ jxlno-‘u"}y

as well as all possible finite disjoint union of these and half-open intervals. From our
assumption we see that u| ,=v| , and that these are o-finite.

Recall that the smallest g-algebra of R" containing all half-open intervals is the
Borel g-algebra 3, of R".

Let p* and v* be the corresponding outer measures to x|, and v| , respectively.

Then, from (ii) of Property 2.3 it follows that

ymyd'lzzvd'lzzv. 71/

Lemma 4.2. Let x4 be a Borel measure defined on X such that for every bounded
Be¥X, p(B) is finite. Then x4 is a regular measure.

Proof. Consider x| ,, where «f is the algebra generated by all half-open intervals
in B, .

Let p* be the outer measure corresponding to x| 4.

The smallest g-algebra containing #f is the Borel g-algebra. ¥ of B". Thus, 4/ J
Cof*, where «/* is the g-algebra consisting of all x*-measurable sets in R".

Since 1 and 4* are two Borel measures on Y which agree on «, and. since x and
u#* are finite on every bounded Borel set from our assumption, we have u=u* on 5
by Lemma 4.1. Therefore, we see that

2(B) =inf{ Z5u(AD | B Asy AVt

for every Be=J, by the definition of #* by (2—1).
This means that

#(B)=inf{Z5p(1)) | B ULL)-

Thus, given £2>0 there exists a covering of B such that £_ . I, and
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= u(l )< pu(B)+E.

Recall that for a sequence {E,} of u-measurable sets, if E.{ E and p(E)<+oo
then limu(E,)=u(E).

For a half-open interval J put
I =(Cany o 20) |8y SEyt Do

then limu(J,")=pu(J) since u(I,/)< oo, (Note that I,’ is contained in a bounded half-
open interval). Hence for a sufficiently small positive number &, there is an open subset
G such that

BG=UL, and a(L)Su )+
Therefore, we have
MOS0 opdy)+e <Zopul)+26 <p(B)+3e. /1/

Lemms 4.3. If # and v are Borel measures which are finite on every bounded Borel
set, then there is a constant ¢ depending only on » such that

i = R" v(Q.(h)) ¢ n
1) a* Ig;lf—vw—”“p 5) >a}<—v(R").
ii i ¥(Q.(2)) <

(ii) pﬁ{xE':'Bll;‘g; sup (0. ) >a)<-=»(B)

for every Borel set BC—R"® and any a>0, where u® is the outer measure corresponding
to ul 4 '

Proof. At first, we have to note that » and v are regular by Lemma 4.2 and that
,u=p’|z. Fix a>0.

(i) Let us put

et (@ ()
S= SR s 2oty Y

and take a bounded Borel set B such that S{)B#¢. Then, for each x€=S{|B there is
a cube @, such that v(@,)>au(Q,.). Using the Besicovitch Covering Lemma, we can
select {Q.,) and constant ¢ such that
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w(@,,) >au(Qy,), SNBCUQ,,, e, <.

Since

#*(SNBYSAY(UQs) = #(UQs) < Zop(Qe) < Zo0(Qs),

(@) =22 I gu, Koot dv&cj van PP = (UQm)-
It follows that
SNBSS v(UQ,) S5-v(RY).

Letting Bt R" we obtain y'(S)S——f—;v(R“).
(ii) Let us put

. . v h)
7= (Bl -S>
and assume that v(B)< oo. By the regularity of v there is an open set G such that

BCG and v (G)<Sw(B)+eE.

For a bounded Borel set £ with T{1E+¢ and for each x2&T{\E there is a cube @,
such that

QG and ¥ (Q)>an(Q.).

As above, there exists {Q.,} with Q,,CG such that
PHTNE) <25 (UQsy)

Hence
HHTNE) S-S v(G)S-o-(v(B)+8).

Qur assertion follows by letting 6—-+0 and then £ TR".
If »(B)=1oo,then there is nothing to prove. /77

Theorem 4.4. Let f be a Borel measurable function on R" (i.e., f:R"— R and
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{x&R"| f(x)>a}e= L) which is u-integrable over bounded Borel set in B”. Then

i 1
lﬁﬁfunmdﬂ#u) a.e. (x).

Proof. If fe=L'(du), then there is a continuous function g: R"—s R with compact
support such that I R~ f—gldu is arbitrary small by proposition 2. 4.

In this case we have

1
X e h)‘)‘f..«.,f du—f (=)
1 N 1 _
Sp@.(?i))jo.m‘f 8’”{44—];‘—( -U‘l))[e.mgd‘“ f(x)].

Noting that the last term on the right side converges to {g(x)—f(x)] as hA—0, we
have

: 1
(41 | 0. O ))L ) FB—T ()]
1
S%W (N ))L_m!f-»gldﬂ+Ef(x)—~-;¢(x)l-

Set
- Y RS S w YD
8, = {xe=R "z@m Bl ,wf du—f(x)| >e}.

Then S, is contained in the union of the two sets where the corresponding terms on
the right side of the inequality (4—1) exceed -—g’-— respectively.
That is, if we put

- w(Q, (h €

S={x&R"|sup Oy > 5)
and

T=(raRf(x)—e()| >4

where

V(Qu(h)) = fwm—gwy. Then S.=SUT.
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It is easily proved that v is a Bore measure which is finite on every bounded Borel
set in R,

Therefore, by Lemma 4.3
2¢ -
u*(8) <~ R,,lf gldp.
From the Tchebyshev's inequality ([123}) we also obtain
2
* St - »
p L[ 1 —gldn

Therefore p*(8,)—0 as €—0.

Let us assume that f:Li(du). By hypothesis f is locally p-integrable on R”.
Thus, it is enough to show that our conclusion holds a.e. (#) in every open ball. Fix
a ball and replace f by zero outside this ball, Then this new function is g-integrable
over R", i.e., in L}(du). By the proof which we have just proved &bove, its integral
is differentiable a.e.(x), ice., our assertion holds for this integral. That the diffe-
rentiability is a local property tells us that the initial function f is differentiable a.e.
(#) in the ball.

That is,

. | _ /1]
lim =y Joun” =) a2 (m).
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