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ON THE CONTINUITY OF THE MAP INDUCED
BY SCALAR-INPUT CONTROL SYSTEM

CHANG EoN SHIN

ABSTRACT. In the control system

2(t) = f(t,2(t)) + g(t, z(t))u(t), =(0) =2, t € [0, 7],
this paper shows that the map from u with L1(m)~topology to z, with
L'(u)—topology is Lipschitz continuous where f is C1, p is the Stieltjes
measure derived from the function g which is not smooth in the variable
t and z, is the solution of the above system corresponding to u under
the assumption that 4 is bounded.

1. Introduction

Let f,g be the maps from R x IR™ into JR".  Consider the control
system

#(t) = f(t,z(t)) + g(t,z(t))u(t), =z(0)=zeR", te0,T], (11)
where - = £ u(t) € R and f is a C" function. For a smooth control u,
denote by z, the corresponding solution of (1.1) if it exists. If g is a
C? function, A. Bressan[4] proved that the map o : U — V defined by
o(u) = z, is Lipschitz continuous with respect to L' —norm, where for
some k, k' € R,

U={u:{0,T] - R |wis C' and |u(t)| < k for any t € [0,T]}
and
V={z:[0,T] - R" | zis C' and |z(¢)| < k' for any t € [0, T},
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that is, there exists L > 0 such that for any 7 € [0 T] and any u,v € U,
.
frulr) =2+ [ fout) ~ et
0
T
<L [fu(lo) = v(0)] + fu(r) ~ o(7)] +/ u(t) — U(f)ldl‘J - (1.2)
0

Aslong as u is just measurable, the corresponding solution of (1.1) should
be interpreted as a distribution which is not unique.[7]  Due to (1.2),
A. Bressan in [4] defined a unique generalized solution of (1.1) corre-
sponding to a Lebesgue integrable function u by taking a sequence {u,}
of C? functions which converges to u in L'(m), where m is the Lebesgue
measure and in [3] described a maximum principle.  However, if ¢ is
not differentiable in the variable ¢, then the transformation which was
adopted in [4] to prove inequality (1.2) is not valid and ineqaulity (1.2)
does not hold. (The counterexample is provided in §3.) For each
B > 0, define the sets

Usp={u:[0,T] = R |uis C' and |u(t)| < B for any t € [0, 7]}

and
X ={z:[0,T] - R"™ | z is absolutely continuous }.

Let p1 be the Stieltjes measure defined by (1.4). Put B.(a)={re R":
lz| < a}. Now, we fix # > 1. This paper proves that when ¢ is not
differentiable in the variable ¢, the map ¢ from Ug with L'(m)—topology
into X with L'(u)—topology is Lipschitz continuous under the assump-
tions :

(Al) There exists K > 0 such that for any u € Usandte [0,T),
lzu(t)] < K.

(A2) For every x, the function t — g(t,z) is right continuous; for
every t, the function x — g(t,z) is C'; there exists Ny >1
such that the operator norm || D,¢(t,x)|| < N, for any (t,z) €
[0,T] x Bn(K); and there exists a nondecreasing and right
continuous function ¢ on [0, T] such that
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lg(t,z) — g(s,2)| < &(t) — 6(s) (1.3)
for any t > s and any x € B,(RK), where DIg(t r) represents

the Jacobian matrix of ¢ with components —

acv j
Let p be the Stieltjes measure defined by

u((a.B]) = b—a+ 6(b) — d(a). (1.4)

2. Continuity of ¢

Under assumptions (Al) and (A2), the map o : u — z, is well-
defined.[1] For each u € U, the solution z, of (1.1) is the fixed point
of the map z — ®(u, ), where

¢WJXﬂ=i+/(ﬂsw D)+ g(sizts)u(s)ds,  (2.1)

that 1s,

t
rult) =2+ [ (flssals)) + 905, u(0))is) .
0
By the smoothness of f and (1.3), there exists N, > 1 such that
|f(t,z)| < Na, the operator norm || D, f(t, z)|| < Ny

and |g(t,z)| < N, for any (t,z) € [0,T] x Bp(K).
Let M = max(N; + 8N;,8N1N2). Now, we fix 7 € [0,T]. To inves-

tigate the continuity of o, define a norm || - ||y, on Ug by
T
Jullvy = @)+ ()l + [ Ju(tld (22)
0
and a norm || - || x on X by
—4AMT

lzllx =

T
i |J:(7')|+/0 6_4M’]17(5)|d3. (2.3)
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LEMMA 1. Let h be a continuous real-valued function on [0,T] and let
v € Ug.  Then Stieltjes integral fo (s8)dg(s,z,(s)) exists and satisfies

T T
| / B(s)dg(s, 24(s))] < 28N1 N, / h(s)ldp, (2.4)

where g(s,z) = (g1(s,2),  ,gals,2)) and [ h(s)dg(s.r,(s)) =
(o h(s)dg(s,20(9)), . fy h(s)dga(s, zu(s))).

PROOF. Define F(r,t) = h(r)g(t,z,(¢)) on [0,T] x [0,T]. Then
there exists M > 0 such that

|F(7.t1) = F(7,t2)] < M|(t1) — d(t2) +1t; — t3]

and

IF(Tl-,tl) —_ F(T],tQ)-—F(TQ,tl) + F(Tz,tz),
< MIh(r1) = h(m2)||¢(t1) — $(t2) + t1 — 1]

for any t,,t5,71,72 € [0,7]. Hence the Perron inte gral fOTDF (7,t) ex-
ists and it is equal to the Stieltjes integral fo h(s)dg(s,z,(s)). [6] In
the same way, F(7,t) = |h(7)|(¢(t) + t) is Perron integrable on [0,T].

For any ¢ > 0, there exists a partition 0 = ap <7y L1 <1 < -+, =
T of [0, T] fulfilling

T n
| DRG0 = Y R0~ Fira, )| < e
0 i=1
and
T B n c
. DF(T,‘,O(,‘) - ‘ [F(Tz Oz, F(T,,a, 1) m
=1
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On the other hand,

1Y [F(ri, i) = Fri, i)
1=1
=12 hrlg(anzo(@0) = oot sofei1)
—wZMw, o(@i)) = glai1.zu(ai)
+ g(ai—1, zo(@i)) — glaioy, 2, (ai1))]|
SE:MUﬂHNa/mIﬂ&r&@)+marAﬂwwM%

+ () — d(aiy)]

< 28N1 N2 Y [F(7i,00) — F(mis001)]

=1

T
< 20NN, [ DF(ra)+¢
0
Since ¢ > 0 is arbitrary, IfoT h(s)dg(s,z4(s))| < 28NN, fOT [h(s)|du.
Examples 2 in §3 shows that the constant Cg in the following lemma

depends on the size of u and v.

LEMMA 2. Under assumptions (A1) and (A2), there exists a constant
Cs > 0 such that for any u,v € Uy,

1) 180, 2) — B(u 2)llx < 7lle = 2ol x.
(2) 18(u,20) = 8(0, 20| x < Callu = ollus.

PROOF. Let u,v € Us.
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(1)
|®(u,2y) — ®(u,x,)|x

ﬁn/ (s.2u(s)) = fls.00(s))

(5.2u(s)) — g(s,au(%)))i(s))ds| x

—41'\/17'
(N + BN ra(s) — 2ole)lds

0
./ / YNy + BN )|zu(s) — zo(s)|dsdt

—4MT

= N 0(7\/2+d\ )lau(s —I()IdS

T e —-4Ms ¢ -4 MT
Ny + BN zu(s) — 2ol = ds
+/0 (N2 + ANy)|zu(s) -z (9)'( aM 4M ) ’

L T e —4MT ‘

fandd Z”.’l‘u —_ IL',U”X.

(2) By virtue of (2.4),

|®(u,zy) — B(v,2,)|| x

—H/ (s,24(s))(u(s) = 0(s))ds|| x

—4MT

= g lo(r au(T)(u(r) = v(r)) = g(0, 2,00))(u(0) — v(0)

_./[; (u(s) — v(s))dg(s,ﬁ?v(s)))

T
+A e Mgt 2, (1)) (u(t) — v(1)) = g(0. 24(0))(u(0) — v(0))
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_A(u(s)—U(S))dg(syl'v(s))ldt
6—4MT

<

- 4M
+/ﬂ 28N, Nslu(s) — v(s)|dp)

(N2u(r) = v(7)| + Nafu(0) — v(0)]

T
n / 6—4A4t(N2‘U(t) —v(t)| + Nz|u(01 — v(0)]
0

+/0 20N, N; [u(s) — v(s)|du)dt

< e *MT(Ju(r) — v(7)| + [u(0) — v(0)]

T 6_4MT
4 /0 26N, Nfu(s) — v(s)ldp)

T
+/0 Nalu(t) — vo(t)]dt + NoT|u(0) — v(0)|

T 8—4M.9 6—4MT
- _ d
+/0 28N Na|u(s) U(S)l( aM 4M ) H
< (1 + N T)fju = vy,

Depending on Lemma 2, we can prove the following main theorem:

THEOREM 1. Under assumptions (A1) and (A2), there exists a con-
stant Dg > 0 such that for any 7 € [0,T] and any u,v € Uy,

T
2u(r) — zo(7)] + / [2alt) — zo(8)]dt

T
<Dy [IU(O) = 0(0)] + fu(r) — o(r)| +/0 |u(t) - v(t)idu] (2.5)

PROOF. By Lemma 2,

3
lemu —zyllx < Cpllu— vy,
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16M(1 + NoT)etMT

and (2.5) holds with Dg = 3

REMARK. It remains as an open question if the constant Dy in the
above theorem is independent of the size of w,v. If it is true, then we
can define the generalized solution z, of (1.1) corresponding to an inte-
grable function u by taking a sequence {u,} of C' functions converging
to u in L(u) so that z,, converges to z, in L'(m:).

3. Examples

EXAMPLE 1. This example shows that the input-output map o is
not continuous with respect to L'(m)—topology without the assump-
tion of smoothness of g in the variable ¢, but the map o from Uz with
L'(m)—topology into X with L'(x)~topology is continuous. In (1.1),
put T=2,f =0. Foreachn € IN, let

a, =1-1/n, bp = (an + ang1)/2, k, =n'? my, = 1/k,,

E],n - bna €2,n :gl,n'*'nlna 63,11 :€2,n+7nn-

Let g(t) be a function from [0,2] into R such that ¢ vanishes on [1,2]
and is defined on each interval [a,.a,41) by

0 n [an

n{t — £y ) on [£y n, €y n)

—n(t —4€3,) on [ly ., b,)
0 n |

él n
g(t) =
E3 n an+l) .

Then g¢(t) is absolutely continuous and we can take the function ¢(?)
in (1.3) as the abolutely continuous function such that ¢(0) = 0, ¢(t) 1s
constant on [1,2] and on each interval [an,an+1),

QS(t) - { ] on {am[l,n) U [€3a"’a"+])

n on [{y ,,0.).
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To define the sequence {u,} of C! functions which does not satisfy (1.2)
with u = u, and v = 0, we introduce the points in the interval (a,, a,41);

— 2
X1n “‘bn — My "'an 3

2
A2 n = bn —2m,°,
agn, =20, and oy, =~ ,.

For each n € IN, define functions v, : [0,2] — IR such that each v,
vanishes on [0,a,) U (@n+1,2] and on [ay, ant1]

(0 on [an, a,n)
an(t — Cll,n)Zk"_l on [al,na Cl‘2,71)
« o
vn(t) = ¢ —Zkflmn%"_l (t - _?%iﬂ> on [az n,®3,n)
an(t — (14,,,)2]‘"—1 on [a3,n»a4,n)
0 on [014,713 an+1]~
Each v, is continuous on [0,2|. Let u, be the solution of the initial

value problem
in(t) = vn(t),  un(0)=0
Then each u, is a C! function, |i,(t)| < 1 for any ¢ € [0, 2] and

2 a9, n Q3 n Qg n
/ |un(t)|dt=/ un(t)dt+/ un(t)df-+—/ un(t)dt
0 ay, . n az n

n

I 2kn 1
< "
- 2k, +1

= m, P t1O(n=1"). (3.1)
Let z,(t) be the solution of the initial value problem
H() = g(t)in(t),  2(0) =0,

+ 2m”2k,.+2 + mnr“k"’H

Then
04, n

|z n(ag,n)| = | n(t — ag ) 2kn(t — org n) 2=~ dt]

2mpin k. n
4kn? + 2k, |
= myp 2 t10(n=9). (3.2)
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Since , is nonincreasing, for any L > 0 there exists n € IV such that
(1.2) does not hold.  But

2 Q3 n a2,n
/ |un(t)|dy > / u,(t)dt +/ un(t)do(t)
0 ay, !

n ,n

y1 2hn 1
and .
j[ |z n(t)|dt < 4:“;%_2k 2, - 2. (3.4)

From (3.3) and (3.4), there exists a constant satisfying (2.5) for 7 = 0.

EXAMPLE 2. This example shows that the constant Cz in Lemma 2
depends on the size of @ and ©. Consider the control system

&= g(x)i(t), tel0.1, z(0)=1,

where g(z) = z. For each n € IN, define the functions u,(t) and v,(t)
on [0,1] such that both of them are periodic functions with period 1/n
and on [0,1/n]

. nt t€[0,1/2n)
vn(t) = { —n(t—1/n) te[1/2n,1/n],

—nt t€10.1/4n)
un(t) = ¢ 3n(t—1/4n)—1/4 t € [1/4n,3/4n)
—5n(t —1/n) te[3/4n,1/n].

Then u,, and v,, are differentiable almost everywhere, uniformly bounded
and satisfy that v, > u, on [0,1/2n] and v, < u, on [1/2n.1/n]. De-
note r, = r, . Now, let us compare

1
2/0 |®(vy, 2n)(8) — B(vp, 2,)(5)|ds)
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/ lun(t) — va(t)|dt.
0

To compute the first one, simplify the integrand by

and

/0 9(n(8))(0n(s) — iin(5))ds = g(zn(H))(wnlt) = un(t))
/(v (5) = wn(8))Dag(z nls))in(s)ds

H

Don(t) - ualt)) - / (0(5) — un($))2n(s)in(s)ds.

Thus

/ / o(5))(En() = in(s))ddt
> / / nlons) = unfdsct — [ L2, (1) — un(Didr (3.5)

On the other hand

n (t-1)A+ [_1 [vn(s) — un(s)|ds)dt

=1 n n

_An(n-1) = [ ~ .
= —— +n/o JA [vn(s) — un(s)|dsdt

n
3(n—1)
T 16n + 32n

where A = fO% lvn(s) — un(s)lds = .  From (3.5),

/ / (n(s))(in(s) — in()sldt > LWy 5l
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Since fol [vn(s) — un(s)|ds = 2, for any L > 0, there exists n € IV such
that

/: IAtg(xn(s))(bn('S) — tin(s))ds|dt > L/O1 on(8) — un(s)|ds.

Approximating u, and v, by C! functions, we can conclude that the
constant C'g in Lemma 2.2 depends on 3.

-1
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