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GOLDEN RATIO RIESZ-NÁGY-TAKÁCS
DISTRIBUTION

In-Soo Baek*

Abstract. We study some properties of the Riemann-Stieltjes in-
tegrals with respect to the Riesz-Nágy-Takács distribution Ha,p

and its inverse Hp,a on the unit interval satisfying the equation
1−a = a2 and p = 1−a. Using the properties of the dual distribu-
tions Ha,p and Hp,a, we compare the Riemann-Stieltjes integrals of
Ha,p over some essential intervals with that of its inverse Hp,a over
the related intervals.

1. Introduction

Golden ratio φ =
√

5+1
2 is the popular number related to the Fibonacci

sequence. Recently we([2, 5]) also studied the moments and Riemann-
Stieltjes integral of the Riesz-Nágy-Takács distribution([12]) which is a
strictly increasing singular function. Further we([3, 4]) also discussed
the Riemann-Stieltjes integrals with respect to the Riesz-Nágy-Takács
distribution Ha,p and Ha′,p′ satisfying the equations 1 − a = am and
a′ = (1 − a′)m where m is a positive integer over some fundamental
intervals. In this paper, we study Ha,p and its dual distribution or its
inverse Hp,a where a = 1

φ with φ =
√

5+1
2 and p = 1 − a. We note that

1− a = a2 where a = 1
φ , so we can apply our results([2, 3, 4, 5]) to this

peculiar example Hp,a, which we will call the golden ratio Riesz-Nágy-
Takács distributions.

In this paer, we find some solutions of area comparison equations re-
lated to the Riemann-Stieltjes integrals with respect to the Riesz-Nágy-
Takács distribution Ha,p and its inverse Hp,a. This will give some insight
for the golden ratio Riesz-Nágy-Takács distributions.
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2. Preliminaries

Let N be the set of the positive integers. Consider a ∈ (0, 1) and
p ∈ (0, 1). We([2]) recall the Riesz-Nágy-Takács distribution

Ha,p(x) = Σ∞j=1

(1− p)j−1

pj−1
paj

for

x = Σ∞j=1

(1− a)j−1

aj−1
aaj ∈ (0, 1]

with integers 1 ≤ a1 < a2 < · · · < aj < · · · and Ha,p(0) = 0.
We define an n-th fundamental interval Ii1···in = fi1 ◦ · · · ◦ fin(I) for

Ha,p where f0(x) = ax and f1(x) = (1−a)x+a on I = [0, 1], ij ∈ {0, 1}
and 1 ≤ j ≤ n. Clearly there are 2n members of the n-th fundamental
intervals in [0, 1]. We note that [0, 1] is the self-similar set by the iteration
function system {f0, f1}([8]) satisfying the open set condition.

We give some integral equations for the Riesz-Nágy-Takács distribu-
tions Ha,p over the fundamental intervals.

Proposition 2.1. ([5]) For the Riesz-Nágy-Takács distributions F =
Ha,p, we have
∫ γ+an−k(1−a)k

γ
φ(t)dF (t) = pn−k(1− p)k

∫ 1

0
φ(an−k(1− a)kt + γ)dF (t)

where [γ, γ + an−k(1 − a)k] is an n-th fundamental interval where k =
0, 1, ..., n− 1, n.

From now on, we fix F (x) = Ha,p(x) on the unit interval where
1 − a = a2 and p = 1 − a. Clearly we see that a = 1

φ with φ =
√

5+1
2 .

We call F the golden ratio Riesz-Nágy-Takács distribution. We also
note that F−1(x) = Hp,a(x) on the unit interval, that is the inverse
function on the unit interval of the golden ratio Riesz-Nágy-Takács dis-
tribution F is the dual distribution([4]) of F . From now on, we define
[0, a], [0, p], [a, 1], [p, 1] to be the essential intervals.

We also give some integral equations for dual Riesz-Nágy-Takács dis-
tributions F, F−1 over some essential intervals, which also can be derived
from the above Proposition.

Proposition 2.2. ([3, 5])
∫ p

0
φ(t)dF (t) = p2

∫ 1

0
φ(pt)dF (t).
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Proposition 2.3. ([4, 5])
∫ 1

a
φ(t)dF−1(t) = p2

∫ 1

0
φ(pt + (1− p))dF−1(t).

3. Main results

We give the value F (x) for x ∈ [0, 1] using the β-expansion([13]) of
x.

Theorem 3.1. For every x ∈ [0, 1], x = Σ∞j=1
1

φkj
for some integers

1 ≤ k1 < k1 + 1 ≤ k2 < k2 + 1 ≤ · · · ≤ kj < kj + 1 ≤ · · · ,

where φ is the golden ratio
√

5+1
2 . Further

F (Σ∞j=1

1
φkj

) = Σ∞j=1

1
φ2kj−3j+3

.

Proof. For every x ∈ (0, 1], there are integers 1 ≤ a1 < a2 < · · · <

aj < · · · such that x = Σ∞j=1
(1−a)j−1

aj−1 aaj ([12]). Noting 1−a
a = a = 1

φ ,

we have (1−a)j−1

aj−1 aaj = 1

φkj
where kj = aj + j − 1. This gives the first

argument. The fact that 1−p
p = φ and p = 1

φ2 gives (1−p)j−1

pj−1 paj =
1

φ2aj−j+1 . The second argument follows from aj = kj − j + 1.

We compute some Riemann-Stieltjes integrals with respect to the
golden ratio Riesz-Nágy-Takács distribution F and its inverse F−1 on
the essential intervals [0, p], [0, a].

Theorem 3.2. On the essential intervals [0, p], [0, a], we have

(1)
∫ p
0 tdF (t) = 13−21a

3−4a ,

(2)
∫ p
0 tdF−1(t) = 13a−8

3−4a ,

(3)
∫ a
0 tdF (t) = 5a−3

3−4a ,

(4)
∫ a
0 tdF−1(t) = 18−29a

3−4a .

Proof. (1) follows from Proposition 2.2 and Proposition 2.1. Not-
ing F−1 = Hp,a, we have (2) from Proposition 2.1. (3) follows from
Proposition 2.1. Noting

∫ a

0
tdF−1(t) =

∫ 1

0
tdF−1(t)−

∫ 1

a
tdF−1(t),

we have (4) from Proposition 2.3 and Proposition 2.1.
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Remark 3.3. In the above Theorem, [0, a] is a fundamental interval
for F and [0, p] is a fundamental interval for F−1. Further [0, p] is a
fundamental interval for F whereas [0, a] is not a fundamental interval
for F−1.

The next Corollary is a comparison of the Riemann-Stieltjes integrals
of an identity function with respect to F and F−1 over a fundamental
interval.

Corollary 3.4. For the value
∫ p
0 tdF−1(t), we have

(1)
∫ p
0 tdF (t) = a

∫ p
0 tdF−1(t),

(2)
∫ a
0 tdF (t) = 1

a2

∫ p
0 tdF−1(t).

Proof. It follows from the above Theorem.

Corollary 3.5. We have a reciprocal relation between F and F−1

such that∫ p

0
tdF (t) +

∫ a

0
tdF (t) =

∫ p

0
tdF−1(t) +

∫ a

0
tdF−1(t).

Proof. It follows from the above Theorem.

Remark 3.6. A simple geometric comparison gives the inequality
∫ p

0
tdF−1(t) <

ap

2
<

∫ a

0
tdF (t).

The intermediate value theorem leads us to arrive at the finding of the
solution between p and a of the equation

g(x) =

∫ x
0 tdF (t)∫ p

0 tdF−1(t)
= 1

since
∫ p
0 tdF (t) = a

∫ p
0 tdF−1(t) <

∫ p
0 tdF−1(t) and g is a continuous

function on the unit interval. More precisely,

g(p) = a < 1 < g(a) =
1
a2

< g(1) =
1
a5

.

Theorem 3.7.
∫ x
0 tdF (t) =

∫ p
0 tdF−1(t) for x = p

1−p2 = 3−√5
3
√

5−5
∈

(p, a).

Proof. Let

g(x) =

∫ x
0 tdF (t)∫ p

0 tdF−1(t)
.
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We find g(p + Σk
n=1a

2n+2(1− a)n−1) < 1 for each k ∈ N, whereas g(p +
Σk

n=1a
2n+1(1−a)n−1) > 1 for each k ∈ N. This follows from the iterated

application of Proposition 2.1. This gives our conclusion that

p + Σ∞n=1a
2n+2(1− a)n−1 = p + Σ∞n=1p

n+1pn =
p

1− p2

is the solution of g(x) = 1.

Remark 3.8. Consider a continuous function

h(x) =

∫ x
0 tdF (t)∫ x

0 tdF−1(t)

on (0, 1]. The same arguments of the above Corollaries give the inequal-
ity

h(p) = a < 1 < h(a) =
1

3a− 1
< h(1) =

1
a2

.

The intermediate value theorem leads us to arrive at the finding of the
solution between p and a of the equation h(x) = 1. However we note
that

h

(
p

1− p2

)
=

∫ p

1−p2

0 tdF (t)
∫ p

1−p2

0 tdF−1(t)
=

∫ p
0 tdF−1(t)

∫ p

1−p2

0 tdF−1(t)
<

∫ p
0 tdF−1(t)∫ p
0 tdF−1(t)

= 1.

There must be a solution x ∈ ( p
1−p2 , a) such that h(x) = 1 from the

intermediate value theorem. It would be interesting to find such a solu-
tion.
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