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ABSTRACT. We study some properties of the Riemann-Stieltjes in-
tegrals with respect to the Riesz-Négy-Takacs distribution H,,p
and its inverse Hp,, on the unit interval satisfying the equation
1—a=a?and p = 1—a. Using the properties of the dual distribu-
tions Ha,p and Hp o, we compare the Riemann-Stieltjes integrals of
H, , over some essential intervals with that of its inverse Hy o over
the related intervals.

1. Introduction

Golden ratio ¢ = @ is the popular number related to the Fibonacci
sequence. Recently we([2, 5]) also studied the moments and Riemann-
Stieltjes integral of the Riesz-Négy-Takécs distribution([12]) which is a
strictly increasing singular function. Further we([3, 4]) also discussed
the Riemann-Stieltjes integrals with respect to the Riesz-Nagy-Takécs
distribution H,, and Hy p satisfying the equations 1 —a = ¢™ and
a = (1 —a')™ where m is a positive integer over some fundamental
intervals. In this paper, we study H,, and its dual distribution or its

inverse Hy, , where a = é with ¢ = @ and p = 1 — a. We note that

1 —a = a® where a = %, so we can apply our results([2, 3, 4, 5]) to this
peculiar example H,, ,, which we will call the golden ratio Riesz-Nagy-
Takécs distributions.

In this paer, we find some solutions of area comparison equations re-
lated to the Riemann-Stieltjes integrals with respect to the Riesz-Nagy-
Takacs distribution H, , and its inverse Hy, ,. This will give some insight
for the golden ratio Riesz-Nagy-Takécs distributions.
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2. Preliminaries

Let N be the set of the positive integers. Consider a € (0,1) and
€ (0,1). We([2]) recall the Riesz-Négy-Takacs distribution

1—p)y—t
Hy (o) = 50, LD pj)l P

for -
1—a)™
T = ‘?il(aj)laaf € (0,1]
with integers 1 <a; <ag <---<a; <--- and H,p,(0) = 0.

We define an n-th fundamental interval I;,..;, = fi, o---o f; (I) for
H,p where fo(z) = az and fi(z) = (1—a)z+aon I =[0,1],4; € {0,1}
and 1 < j < n. Clearly there are 2™ members of the n-th fundamental
intervals in [0, 1]. We note that [0, 1] is the self-similar set by the iteration
function system { fo, f1}([8]) satisfying the open set condition.

We give some integral equations for the Riesz-Négy-Takacs distribu-
tions H, ), over the fundamental intervals.

PROPOSITION 2.1. ([5]) For the Riesz-Nagy-Takédcs distributions F' =
H,,, we have

'y—i—a"’k(l—a)k 1
/ G(H)AF(t) = p" (1 — p)* /0 H(a" (1 — a)*t +7)dF (1)

where [y,7 + a" (1 — a)*] is an n-th fundamental interval where k =
0,1,....m—1,n.

From now on, we fix F(z) = H,p(z) on the unit interval where
1—a=a®and p=1—a. Clearly we see that a = % with ¢ = @
We call F' the golden ratio Riesz-Ndgy-Takdcs distribution. We also
note that F~(x) = Hp.(z) on the unit interval, that is the inverse
function on the unit interval of the golden ratio Riesz-Nagy-Takacs dis-
tribution F is the dual distribution([4]) of F'. From now on, we define
[0, a], [0, p], [a, 1], [p, 1] to be the essential intervals.

We also give some integral equations for dual Riesz-Néagy-Takacs dis-
tributions F, F~! over some essential intervals, which also can be derived
from the above Proposition.

ProPOSITION 2.2. ([3, 5])

D 1
/ S(1)dE(t) = p? / S(pt)dF(2).
0 0
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ProPOSITION 2.3. ([4, 5])

1 1
/ S(HAF (1) = p? / b(pt + (1 — p))dF~1(1).

3. Main results

We give the value F'(z) for x € [0,1] using the [-expansion([13]) of
x.

THEOREM 3.1. For every x € [0,1], z = ¥, —

=1 g for some integers

1§]{71<k1+1§k22<k2—|—1S-"Skj<kj—|—1§-",

where ¢ is the golden ratio @ Further

1 1

oo _ oo
F( jzlﬁ) - =1 ¢2kj—3j+3'

Proof. For every = € (0, 1], there are integers 1 < a1 < ag < -+ <
i1
aj < --- such that z = X722, (1=a); a%([12]). Noting 1%“”“ =a = é,

ai—1
(1—a)i=! o,

we have ~———a% = ﬁ where k; = a; + 7 — 1. This gives the first

1=p _ N R (A=py =t & _
argument. The fact that o = ¢ and p = g2 gives ~——p® =
W The second argument follows from a; = k; — 5 + 1. O

We compute some Riemann-Stieltjes integrals with respect to the
golden ratio Riesz-N4gy-Takacs distribution F' and its inverse F~! on
the essential intervals [0, p], [0, a].

THEOREM 3.2. On the essential intervals [0, p], [0, a], we have

(1) fy tdF(t) = =52,
(2) [otdFH(t) = 5o
(3) Jo tdF(t) = 3252,

(4) [y tdF~1(t) = 18=2%

Proof. (1) follows from Proposition 2.2 and Proposition 2.1. Not-
ing F~! = H,,, we have (2) from Proposition 2.1. (3) follows from
Proposition 2.1. Noting

/Oa tdF~1(t) = /01 tdF~1(t) — /altdF—l(t),

we have (4) from Proposition 2.3 and Proposition 2.1. O
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REMARK 3.3. In the above Theorem, [0,a] is a fundamental interval
for F and [0,p] is a fundamental interval for F~1. Further [0,p] is a
fundamental interval for F' whereas [0, a] is not a fundamental interval
for F~1.

The next Corollary is a comparison of the Riemann-Stieltjes integrals
of an identity function with respect to F and F~! over a fundamental
interval.

COROLLARY 3.4. For the value [ tdF~1(t), we have

(1) [y tdF(t) = a [} tdF~1(t),
(2) [y tdF(t) = g5 [§ tdF = (t).
Proof. Tt follows from the above Theorem. O

COROLLARY 3.5. We have a reciprocal relation between F and F~!
such that

P a D a

/tdF(t)—i—/ tdF(t):/ tdF_l(t)—i—/ tdF~L(t).
0 0 0 0

Proof. Tt follows from the above Theorem. O

REMARK 3.6. A simple geometric comparison gives the inequality
4 a
/ tdF—(t) < 2L </ tdF(t).
0 2 0

The intermediate value theorem leads us to arrive at the finding of the
solution between p and a of the equation

() Jo tdE(t)
9x) = 2p N =
JPtdF—1(t)
since [VtdF(t) = a [y tdF~(t) < [JtdF~!(t) and g is a continuous

function on the unit interval. More precisely,

g(p)=a<1<g(a)=%<g(1)=%.

THEOREM 3.7. [JtdF(t) = [JtdF~1(t) for x = {25 = 3-V5
(p,a).

Proof. Let
_Jo taF(t)

90 = Treari(ny
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We find g(p + ¥k_,a?"+2(1 — a)"1) < 1 for each k € N, whereas g(p +
Yk_a?" (1 —a)"1) > 1 for each k € N. This follows from the iterated
application of Proposition 2.1. This gives our conclusion that

pHE a1 —a) T = p 02 " = 1 _pp2
is the solution of g(z) = 1. O

REMARK 3.8. Consider a continuous function
S tdE ()
h(z) = 5507,1
Jo tdF=1(t)
on (0, 1]. The same arguments of the above Corollaries give the inequal-
ity
hp) = a <1< h(a) = —— < (1) =
=a a)=-—— = —.
P 3a—1 a?
The intermediate value theorem leads us to arrive at the finding of the

solution between p and a of the equation h(x) = 1. However we note
that

_pP _
p Jo " tdF(t) JotdF~H ) fy tdF (¢
i)~ = = S [TdE-L() =1
P [ dr-t@) [ wdE () o
There must be a solution x € (#,a) such that h(z) = 1 from the

intermediate value theorem. It would be interesting to find such a solu-
tion.
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