GOLDEN RATIO RIESZ-NÁGY-TAKÁCS DISTRIBUTION

In-Soo Baek*

Abstract

We study some properties of the Riemann-Stieltjes integrals with respect to the Riesz-Nágy-Takács distribution $H_{a, p}$ and its inverse $H_{p, a}$ on the unit interval satisfying the equation $1-a=a^{2}$ and $p=1-a$. Using the properties of the dual distributions $H_{a, p}$ and $H_{p, a}$, we compare the Riemann-Stieltjes integrals of $H_{a, p}$ over some essential intervals with that of its inverse $H_{p, a}$ over the related intervals.

1. Introduction

Golden ratio $\phi=\frac{\sqrt{5}+1}{2}$ is the popular number related to the Fibonacci sequence. Recently we([2, 5]) also studied the moments and RiemannStieltjes integral of the Riesz-Nágy-Takács distribution $([12])$ which is a strictly increasing singular function. Further we([3, 4]) also discussed the Riemann-Stieltjes integrals with respect to the Riesz-Nágy-Takács distribution $H_{a, p}$ and $H_{a^{\prime}, p^{\prime}}$ satisfying the equations $1-a=a^{m}$ and $a^{\prime}=\left(1-a^{\prime}\right)^{m}$ where m is a positive integer over some fundamental intervals. In this paper, we study $H_{a, p}$ and its dual distribution or its inverse $H_{p, a}$ where $a=\frac{1}{\phi}$ with $\phi=\frac{\sqrt{5}+1}{2}$ and $p=1-a$. We note that $1-a=a^{2}$ where $a=\frac{1}{\phi}$, so we can apply our results([2, 3, 4, 5]) to this peculiar example $H_{p, a}$, which we will call the golden ratio Riesz-NágyTakács distributions.

In this paer, we find some solutions of area comparison equations related to the Riemann-Stieltjes integrals with respect to the Riesz-NágyTakács distribution $H_{a, p}$ and its inverse $H_{p, a}$. This will give some insight for the golden ratio Riesz-Nágy-Takács distributions.

[^0]
2. Preliminaries

Let \mathbb{N} be the set of the positive integers. Consider $a \in(0,1)$ and $p \in(0,1)$. We([2]) recall the Riesz-Nágy-Takács distribution

$$
H_{a, p}(x)=\Sigma_{j=1}^{\infty} \frac{(1-p)^{j-1}}{p^{j-1}} p^{a_{j}}
$$

for

$$
x=\Sigma_{j=1}^{\infty} \frac{(1-a)^{j-1}}{a^{j-1}} a^{a_{j}} \in(0,1]
$$

with integers $1 \leq a_{1}<a_{2}<\cdots<a_{j}<\cdots$ and $H_{a, p}(0)=0$.
We define an n-th fundamental interval $I_{i_{1} \cdots i_{n}}=f_{i_{1}} \circ \cdots \circ f_{i_{n}}(I)$ for $H_{a, p}$ where $f_{0}(x)=a x$ and $f_{1}(x)=(1-a) x+a$ on $I=[0,1], i_{j} \in\{0,1\}$ and $1 \leq j \leq n$. Clearly there are 2^{n} members of the n-th fundamental intervals in $[0,1]$. We note that $[0,1]$ is the self-similar set by the iteration function system $\left\{f_{0}, f_{1}\right\}([8])$ satisfying the open set condition.

We give some integral equations for the Riesz-Nágy-Takács distributions $H_{a, p}$ over the fundamental intervals.

Proposition 2.1. ([5]) For the Riesz-Nágy-Takács distributions $F=$ $H_{a, p}$, we have

$$
\int_{\gamma}^{\gamma+a^{n-k}(1-a)^{k}} \phi(t) d F(t)=p^{n-k}(1-p)^{k} \int_{0}^{1} \phi\left(a^{n-k}(1-a)^{k} t+\gamma\right) d F(t)
$$

where $\left[\gamma, \gamma+a^{n-k}(1-a)^{k}\right]$ is an n-th fundamental interval where $k=$ $0,1, \ldots, n-1, n$.

From now on, we fix $F(x)=H_{a, p}(x)$ on the unit interval where $1-a=a^{2}$ and $p=1-a$. Clearly we see that $a=\frac{1}{\phi}$ with $\phi=\frac{\sqrt{5}+1}{2}$. We call F the golden ratio Riesz-Nágy-Takács distribution. We also note that $F^{-1}(x)=H_{p, a}(x)$ on the unit interval, that is the inverse function on the unit interval of the golden ratio Riesz-Nágy-Takács distribution F is the dual distribution([4]) of F. From now on, we define $[0, a],[0, p],[a, 1],[p, 1]$ to be the essential intervals.

We also give some integral equations for dual Riesz-Nágy-Takács distributions F, F^{-1} over some essential intervals, which also can be derived from the above Proposition.

Proposition 2.2. ([3, 5])

$$
\int_{0}^{p} \phi(t) d F(t)=p^{2} \int_{0}^{1} \phi(p t) d F(t)
$$

Proposition 2.3. ([4, 5])

$$
\int_{a}^{1} \phi(t) d F^{-1}(t)=p^{2} \int_{0}^{1} \phi(p t+(1-p)) d F^{-1}(t)
$$

3. Main results

We give the value $F(x)$ for $x \in[0,1]$ using the β-expansion([13]) of x.

Theorem 3.1. For every $x \in[0,1], x=\Sigma_{j=1}^{\infty} \frac{1}{\phi^{k_{j}}}$ for some integers

$$
1 \leq k_{1}<k_{1}+1 \leq k_{2}<k_{2}+1 \leq \cdots \leq k_{j}<k_{j}+1 \leq \cdots
$$

where ϕ is the golden ratio $\frac{\sqrt{5}+1}{2}$. Further

$$
F\left(\Sigma_{j=1}^{\infty} \frac{1}{\phi^{k_{j}}}\right)=\Sigma_{j=1}^{\infty} \frac{1}{\phi^{2 k_{j}-3 j+3}} .
$$

Proof. For every $x \in(0,1]$, there are integers $1 \leq a_{1}<a_{2}<\cdots<$ $a_{j}<\cdots$ such that $x=\Sigma_{j=1}^{\infty} \frac{(1-a)^{j-1}}{a^{j-1}} a^{a_{j}}([12])$. Noting $\frac{1-a}{a}=a=\frac{1}{\phi}$, we have $\frac{(1-a)^{j-1}}{a^{j-1}} a^{a_{j}}=\frac{1}{\phi^{k_{j}}}$ where $k_{j}=a_{j}+j-1$. This gives the first argument. The fact that $\frac{1-p}{p}=\phi$ and $p=\frac{1}{\phi^{2}}$ gives $\frac{(1-p)^{j-1}}{p^{j-1}} p^{a_{j}}=$ $\frac{1}{\phi^{2 a_{j}-j+1}}$. The second argument follows from $a_{j}=k_{j}-j+1$.

We compute some Riemann-Stieltjes integrals with respect to the golden ratio Riesz-Nágy-Takács distribution F and its inverse F^{-1} on the essential intervals $[0, p],[0, a]$.

Theorem 3.2. On the essential intervals $[0, p],[0, a]$, we have
(1) $\int_{0}^{p} t d F(t)=\frac{13-21 a}{3-4 a}$,
(2) $\int_{0}^{p} t d F^{-1}(t)=\frac{13 a-8}{3-4 a}$,
(3) $\int_{0}^{a} t d F(t)=\frac{5 a-3}{3-4 a}$,
(4) $\int_{0}^{a} t d F^{-1}(t)=\frac{18-29 a}{3-4 a}$.

Proof. (1) follows from Proposition 2.2 and Proposition 2.1. Noting $F^{-1}=H_{p, a}$, we have (2) from Proposition 2.1. (3) follows from Proposition 2.1. Noting

$$
\int_{0}^{a} t d F^{-1}(t)=\int_{0}^{1} t d F^{-1}(t)-\int_{a}^{1} t d F^{-1}(t)
$$

we have (4) from Proposition 2.3 and Proposition 2.1.

Remark 3.3. In the above Theorem, $[0, a]$ is a fundamental interval for F and $[0, p]$ is a fundamental interval for F^{-1}. Further $[0, p]$ is a fundamental interval for F whereas $[0, a]$ is not a fundamental interval for F^{-1}.

The next Corollary is a comparison of the Riemann-Stieltjes integrals of an identity function with respect to F and F^{-1} over a fundamental interval.

Corollary 3.4. For the value $\int_{0}^{p} t d F^{-1}(t)$, we have
(1) $\int_{0}^{p} t d F(t)=a \int_{0}^{p} t d F^{-1}(t)$,
(2) $\int_{0}^{a} t d F(t)=\frac{1}{a^{2}} \int_{0}^{p} t d F^{-1}(t)$.

Proof. It follows from the above Theorem.
Corollary 3.5. We have a reciprocal relation between F and F^{-1} such that

$$
\int_{0}^{p} t d F(t)+\int_{0}^{a} t d F(t)=\int_{0}^{p} t d F^{-1}(t)+\int_{0}^{a} t d F^{-1}(t) .
$$

Proof. It follows from the above Theorem.
REMARK 3.6. A simple geometric comparison gives the inequality

$$
\int_{0}^{p} t d F^{-1}(t)<\frac{a p}{2}<\int_{0}^{a} t d F(t)
$$

The intermediate value theorem leads us to arrive at the finding of the solution between p and a of the equation

$$
g(x)=\frac{\int_{0}^{x} t d F(t)}{\int_{0}^{p} t d F^{-1}(t)}=1
$$

since $\int_{0}^{p} t d F(t)=a \int_{0}^{p} t d F^{-1}(t)<\int_{0}^{p} t d F^{-1}(t)$ and g is a continuous function on the unit interval. More precisely,

$$
g(p)=a<1<g(a)=\frac{1}{a^{2}}<g(1)=\frac{1}{a^{5}} .
$$

THEOREM 3.7. $\int_{0}^{x} t d F(t)=\int_{0}^{p} t d F^{-1}(t)$ for $x=\frac{p}{1-p^{2}}=\frac{3-\sqrt{5}}{3 \sqrt{5}-5} \in$ (p, a).

Proof. Let

$$
g(x)=\frac{\int_{0}^{x} t d F(t)}{\int_{0}^{p} t d F^{-1}(t)}
$$

We find $g\left(p+\Sigma_{n=1}^{k} a^{2 n+2}(1-a)^{n-1}\right)<1$ for each $k \in \mathbb{N}$, whereas $g(p+$ $\left.\Sigma_{n=1}^{k} a^{2 n+1}(1-a)^{n-1}\right)>1$ for each $k \in \mathbb{N}$. This follows from the iterated application of Proposition 2.1. This gives our conclusion that

$$
p+\Sigma_{n=1}^{\infty} a^{2 n+2}(1-a)^{n-1}=p+\Sigma_{n=1}^{\infty} p^{n+1} p^{n}=\frac{p}{1-p^{2}}
$$

is the solution of $g(x)=1$.
REmark 3.8. Consider a continuous function

$$
h(x)=\frac{\int_{0}^{x} t d F(t)}{\int_{0}^{x} t d F^{-1}(t)}
$$

on $(0,1]$. The same arguments of the above Corollaries give the inequality

$$
h(p)=a<1<h(a)=\frac{1}{3 a-1}<h(1)=\frac{1}{a^{2}} .
$$

The intermediate value theorem leads us to arrive at the finding of the solution between p and a of the equation $h(x)=1$. However we note that

$$
h\left(\frac{p}{1-p^{2}}\right)=\frac{\int_{0}^{\frac{p}{1-p^{2}}} t d F(t)}{\int_{0}^{\frac{p}{1-p^{2}}} t d F^{-1}(t)}=\frac{\int_{0}^{p} t d F^{-1}(t)}{\int_{0}^{\frac{p}{1-p^{2}}} t d F^{-1}(t)}<\frac{\int_{0}^{p} t d F^{-1}(t)}{\int_{0}^{p} t d F^{-1}(t)}=1
$$

There must be a solution $x \in\left(\frac{p}{1-p^{2}}, a\right)$ such that $h(x)=1$ from the intermediate value theorem. It would be interesting to find such a solution.

References

[1] I. S. Baek, Dimensions of distribution sets in the unit interval, Comm. Korean Math. Soc. 22 (2007), no. 4, 547-552.
[2] I. S. Baek, A note on the moments of the Riesz-Nágy-Takács distribution, Journal of Mathematical Analysis and Applications 348 (1) (2008), 165-168.
[3] I. S. Baek, Some Properties of the Riesz-Nágy-Takács Distribution, Honam Math. Journal 30 (2008), no. 2, 227-231.
[4] I. S. Baek, Properties of dual Riesz-Nágy-Takács distributions, Honam Math. Journal 30 (2008), no. 4, 671-676.
[5] I. S. Baek, The moments of the Riesz-Nágy-Takács distribution over a general interval, Bulletin of the Korean Mathematical Society 47 (2010), no. 1, 187193.
[6] I. S. Baek, Derivative of the Riesz-Nágy-Takács function, Bull. Kor. Math. Soc. 48 (2011), no. 2, 261-275.
[7] I. S. Baek, L. Olsen and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (1) (2007), 267-287.
[8] K. J. Falconer, Techniques in fractal geometry, John Wiley and Sons, 1997.
[9] W. Goh and J. Wimp, Asymptotics for the Moments of Singular Distributions, Journal of Approximation Theory 74 (3) (1993), 301-334.
[10] P. J. Grabner and H. Prodinger, Asymptotic analysis of the moments of the Cantor distribution, Statistics and Probability Letters 26 (3) (1996), 243-248.
[11] F. R. Lad and W. F. C. Taylor, The moments of the Cantor distribution, Statistics and Probability Letters 13 (4) (1992), 307-310.
[12] J. Paradís, P. Viader and L. Bibiloni, Riesz-Nágy singular functions revisited, J. Math. Anal. Appl. 329 (2007), 592-602.
[13] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
*
Department of Mathematics
Pusan University of Foreign Studies
Pusan 608-738, Republic of Korea
E-mail: isbaek@pufs.ac.kr

[^0]: Received March 03, 2011; Accepted May 16, 2011.
 2010 Mathematics Subject Classification: Primary 26A30, 28A80.
 Key words and phrases: singular distribution function, metric number theory, Riemann-Stieltjes integral, golden ratio, β-expansion.

