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BOUNDS OF SOLUTIONS OF AN INTEGRO-DIFFERENTIAL
EQUATION INVOLVING IMPULSES

Young Jin Kim

Abstract. In this paper we obtain some integral inequalities involving impulses
and apply our results to a certain integro-differential equation with impulses. First,
we obtain a bound of the equation, and we use the bound to study some qualitative
properties of the equation.

1. Introduction

Differential equations with impulses arise in various real world phenomena in
mathematical physics, mechanics, engineering, biology and so on(see, e.g., [6]). And
integral inequalities are very useful tools in global existence, uniqueness, stability
and other properties of the solutions of various nonlinear differential equations, see,
e.g., [4, 5].

In this paper, we discuss some integral inequalities involving impulses and apply
the inequalities to the study of some qualitative properties of a certain integro-
differential equation involving impulses.

2. Preliminaries

In this section we state some materials that are needed in this paper.
Let R,R+,N be the set of all real numbers, the set of all nonnegative real

numbers, and the set of all positive integers, respectively, and let

G(R+) = {f : R+ → R| ∀t ∈ (0,∞), f(t+), f(t−) and f(0+) exist}, and

G([a, b]) = {f : [a, b] → R| ∀t ∈ [a, b], f(t+) and f(t−) exist},
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where for t ∈ (0,∞) ∪ (a, b), f(t±) = lim
s→t±f(s), f(a+) = lim

s→a+
f(s), f(a−) = f(a),

and f(b−) = lim
s→b−

f(s), f(b+) = f(b), f(0+) = lim
s→0+

f(s). If f ∈ G(R+) or f ∈
G([a, b]), then we say that the function f is regulated on their domains, respectively.
Throughout this paper we define

D = {tk, k ∈ N : 0 < t1 < t2 < · · · < tn < · · · }, Dn = {t1, t2, · · · , tn}.
Then we define PC(R+) = {f : R+ −→ R : f is continuous at every t /∈ D and left-
continuous at every t ∈ D}. It is obvious that if f ∈ PC(R+), then f is regulated on
[0, T ] for every T > 0. Throughout this paper we use the Kurzweil-Stieltjes integrals
and the Stieltjes derivatives. For the integrals and derivatives, and various properties
and notations that are used here, see, e.g., [1, 2, 3, 7, 8, 9] and the references cited
there.

A neighborhood of t in [a, b] is an open interval in [a, b] that contains t. Let a
function α : [a, b] −→ R be nondecreasing. Then we say that α is locally constant
at t, if there exists a neighborhood of t in [a, b], where α is constant. Otherwise, we
say that the function α is not locally constant at t.

Definition 2.1 ([1]). Let f, g : [a, b] −→ R. If α is not locally constant at t ∈ (a, b),
we define

df(t)
dα(t)

= lim
η,δ→0+

f(t + η)− f(t− δ)
α(t + η)− α(t− δ)

,

provided that the limit exists. And for t = a or t = b we define

df(a)
dα(a)

= lim
η→0+

f(a + η)− f(a)
α(a + η)− α(a)

,
df(b)
dα(b)

= lim
δ→0+

f(b)− f(b− δ)
α(b)− α(b− δ)

,

respectively, provided that the limits exist.
If both f and α are constant on some neighborhood of t in [a, b], we define

df(t)
dα(t) = 0. Frequently we use f ′α(t) instead of df(t)

dα(t) .

We use the following results frequently.

Theorem 2.2 ([9, Theorem 2.15]). Assume that f ∈ G([a, b]) and α ∈ BV ([a, b]).
Then both f dα and α df are Kurzweil-Stieltjes integrable on [a, b].

Theorem 2.3 ([1]). Assume that f ∈ G([a, b]) and a function α : [a, b] −→ R is
nondecreasing, and that if α is constant on some neighborhood of t in [a, b], then
there exists a neighborhood of t in [a, b] such that both f and α are constant there.
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Suppose that f ′α(t) exists at every t ∈ [a, b] − {c1, c2, ...}, where f is continuous at
every t ∈ {c1, c2, ...} ⊂ [a, b]. Then we have

(K∗)

b∫

a

f ′α(s) dα(s) = f(b)− f(a).

Now we define a function φ : R+ −→ R+ as

φ(t) =

{
t, if t ∈ [0, t1]
t + k, if t ∈ (tk, tk+1], tk ∈ D, k ∈ N.

(2.1)

For the function φ we have the following result.

Lemma 2.4 ([2]). Assume that a function f ∈ G(R+) is differentiable at t 6= tk ∈
D, k ∈ N. Then we have

f ′φ(t) = f ′(t), f ′φ(tk) = f(tk+)− f(tk−),

and
t∫

0

f(s) dφ(s) =

t∫

0

f(s) ds +
∑

0<tk<t

f(tk), ∀t ∈ R+.

3. Some Integral Inequalities involving Impulses

Throughout this section, unless otherwise specified, we always assume the follow-
ing conditions:

(H1) Every one variable function belongs to PC(R+) and is nonnegative.
(H2) A function w : R+ −→ R+ is nondecreasing, continuous on R+, and positive

on (0,∞). We define

E(t) =

t∫

1

ds

w(s)
, ∀t ∈ R+,

and E−1 represents the inverse of the function E, and Dom(E−1) represents the
domain of the function E−1.

(H3) ak, bk ≥ 0, and 0 ≤ rk, sk ≤ tk, , k ∈ N.

Throughout this paper, for every n, k ∈ N, we define

f̃n =

{
f(t), t /∈ Dn

1, t ∈ Dn,
An(t) =

{
1, t /∈ Dn

0, t ∈ Dn,
Bk(t) =

{
1, t = tk

0, t 6= tk.

And f ◦ g denotes the composite of f and g.

In order to obtain some integral inequalities, we need the following result.
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Lemma 3.1 ([3]). Let a function α : R+ −→ R be strictly increasing. Assume
that a positive left-continuous function z is nondecreasing on R+. If z is continuous
at t and z ′α(t) exists, then we have

d
dα(t)

E(z(t)) =
d

dα(t)

z(t)∫

1

ds

w(s)
=

z ′α(t)
w(z(t))

.

If α is not continuous at t, then we have

d
dα(t)

E(z(t)) =
d

dα(t)

z(t)∫

1

ds

w(s)
≤ z ′α(t)

w(z(t))
.

The following result is an Ou-Yang-type integral inequality.

Theorem 3.2. Let k(t, s) : R+ × R+ −→ R+, and c, ψ, ϕ : R+ −→ R+, where
c is nondecreasing, ψ is strictly increasing, continuous, and ϕ is nondecreasing,
continuous on R+ and positive on (0,∞). Assume that k(·, s) is nondecreasing for
each fixed s ∈ R+. Suppose that k(t, ·) ∈ PC(R+) for each fixed t ∈ R+ and
ψ(0) = 0, ψ(∞) = ∞. If a function u satisfies

ψ(u(t)) ≤ c(t) +

t∫

0

k(t, s)ϕ(u(s)) ds +
∑

0<tk<t

ak ϕ(u(rk)), ∀t ∈ R+,

then for t ∈ [0,M ] we have

u(t) ≤ ψ−1 ◦ E−1[γ(t)],(3.1)

where w = ϕ ◦ ψ−1 and

γ(t) = E(c(t)) +

t∫

0

k(t, s) ds +
∑

0<tk<t

ak,

and the number M is chosen so that, for all t ∈ [0,M ], γ(t) ∈ Dom(E−1).

Proof. Let 0 ≤ t ≤ T ≤ M, where the number T is fixed, and let

z(t) = c(T ) +

t∫

0

k(T, s) ϕ(u(s)) ds +
∑

0<tk<t

ak ϕ(u(rk)).

Then since ψ(u(t)) ≤ z(t) implies u(t) ≤ ψ−1(z(t)), by Lemma 2.4, for every t ∈
([0, T )−D) ∪ {T}, we have

z ′φ(t) = k(T, t) ϕ(u(t)) ≤ k(T, t) ϕ ◦ ψ−1(z(t)) = k(T, t)w(z(t)),
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and, since 0 ≤ rk ≤ tk, by Lemma 2.4, for every tk ∈ D ∩ [0, T ), we get

z ′φ(tk) = ak ϕ(u(rk)) ≤ ak ϕ ◦ ψ−1(z(rk)) = akw(z(rk)) ≤ akw(z(tk)).

Now assume that D∩ [0, T ) = Dn. Then by Lemma 3.1, for every t ∈ [0, T ], we have

(E ◦ z) ′φ(t) ≤ z ′φ(t)
w(z(t))

≤ An(t)k(T, t) +
n∑

k=1

Bk(t)ak.

By Theorem 2.3, Lemma 2.4, and since E(z(0)) = E(c(T )), the above inequality
implies

z(t) ≤ E−1

[
E(c(T )) +

t∫

0

k(T, s) ds +
∑

0<tk<t

ak

]
, ∀t ∈ [0, T ].

Thus we get, for all t ∈ [0, T ],

u(t) ≤ ψ−1 ◦ z(t) ≤ ψ−1 ◦E−1

[
E(c(T )) +

t∫

0

k(T, s) ds +
∑

0<tk<t

ak

]
.

So this implies

u(T ) ≤ ψ−1 ◦E−1

[
E(c(T )) +

T∫

0

k(T, s) ds +
∑

0<tk<T

ak

]
.

Since T was arbitrary the inequalities (3.1) is true for all t ∈ [0,M ]. ¤

Corollary 3.3. In Theorem 3.2, if a function u satisfies

u(t) ≤ c(t) +

t∫

0

f(s)w(u(s)) ds +
∑

0<tk<t

akw(u(rk)),(3.2)

then for t ∈ [0,M ] we have

u(t) ≤ E−1[γ(t)],

where

γ(t) = E(c(t)) +

t∫

0

f(s) ds +
∑

0<tk<t

ak,

and the number M is chosen so that for all t ∈ [0, M ] γ(t) ∈ Dom(E−1).
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The following result is a Pachpatte-type integral inequality.

Theorem 3.4. Let a function ϕ be as in Theorem 3.2, and c is a nonnegative
constant, and let

α(t) = 1 +

t∫

0

g(s) ds.

If for every t ∈ R+ a function u satisfies

u(t) ≤ c +

t∫

0

f(s)


u(s) +

s∫

0

g( σ)
[
u(s) + ϕ(u(σ))

]
dσ


 ds(3.3)

+
∑

0<tk<t

[aku(rk) + bk ϕ(u(sk))],

then we have for every t ∈ [0,M ]

u(t) ≤ c +

t∫

0

f(s)λ(s) ds +
∑

0<tk<t

[akλ(tk) + bk ϕ(λ(tk))],(3.4)

where

λ(t) = E−1[γ(t)], E(t) =

t∫

1

ds

w(s)
, w(s) = max{s, ϕ(s)}, and

γ(t) = E(c) +

t∫

0

[f(s) α(s) + 2g(s)] ds +
∑

0<tk<t

α(tk)(ak + bk),

and the number M is chosen so that, for all t ∈ [0,M ], γ(t) ∈ Dom(E−1).

Proof. Let t ∈ [0,M ]. Denote a function v(t) by

v(t) = c +

t∫

0

f(s)


u(s) +

s∫

0

g( σ)
[
u(s) + ϕ(u( σ))

]
dσ


 ds

+
∑

0<tk<t

[aku(rk) + bk ϕ(u(sk))].

Then, v(0) = c, u(t) ≤ v(t), ∀t ∈ [0, M ]. By Lemma 2.4, for t ∈ ([0,M)−D)∪{M},
we have
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v ′φ(t) = f(t)


u(t) +

t∫

0

g( σ)[u(t) + ϕ(u( σ))] dσ




≤ f(t)


v(t) +

t∫

0

g(σ)[v(t) + ϕ(v( σ))] dσ


 ,

and since 0 ≤ sk, rk ≤ tk and v is nondecreasing, by Lemma 2.4, for every tk ∈
[0,M) ∩D, we have

v ′φ(tk) = aku(rk) + bk ϕ(u(sk)) ≤ akv(rk) + bk ϕ(v(sk)) ≤ akv(tk) + bk ϕ(v(tk)).

Now assume that D ∩ [0,M) = Dn. Then for every t ∈ [0, M ] we have

v ′φ(t) ≤ f̃n(t)

[
An(t)

(
v(t) +

t∫

0

g( σ)[v(t) + ϕ(v( σ))] dσ

)
(3.5)

+
n∑

k=1

Bk(t)[akv(tk) + bk ϕ(v(tk))]

]
.

Define a function m(t) by

m(t) = An(t)

(
v(t) +

t∫

0

g( σ)[v(t) + ϕ(v( σ))] dσ

)

+
n∑

k=1

Bk(t)[akv(tk) + bk ϕ(v(tk))],

then m(0) = v(0) = c, and

v ′φ(t) ≤ f̃n(t)m(t).(3.6)

Let

z(t) = v(t) +

t∫

0

g( σ)[v(t) + ϕ(v( σ))] dσ, ∀t ∈ [0,M ].(3.7)

Then, by (3.6) and (3.7), we have

∀t ∈ [0,M ], v(t) ≤ z(t), and ∀t ∈ [0,M ]−Dn, v ′φ(t) ≤ f̃n(t)m(t) = f(t)z(t),(3.8)
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and so for every t ∈ [0, M ]−Dn, by Lemma 2.4 we get

z ′φ(t) = v ′φ(t) + g(t) ϕ(v(t)) + v ′φ(t)

t∫

0

g( σ) dσ + v(t)g(t)(3.9)

≤ f(t)z(t) + g(t) ϕ(z(t)) + f(t)z(t)

t∫

0

g( σ) dσ + z(t)g(t)

≤

f(t) + g(t) + f(t)

t∫

0

g( σ) dσ + g(t)


w(z(t))

= [f(t) α(t) + 2g(t)]w(z(t)).

And for every tk ∈ Dn by (3.5), (3.7), (3.8), and by Lemma 2.4, we have

z ′φ(tk) = z(tk+)− z(tk−) = z(tk+)− z(tk)(3.10)

=

(
1 +

tk∫

0

g( σ) dσ

)
v ′φ(tk) ≤ α(tk)[akv(tk) + bk ϕ(v(tk))]

≤ α(tk)[akz(tk) + bk ϕ(z(tk))] ≤ α(tk)(ak + bk)w(z(tk)).

Thus by (3.9) and (3.10), we get

z ′φ(t) ≤An(t)[f(t) α(t) + 2g(t)]w(z(t))

+
n∑

k=1

Bk(t) α(tk)(ak + bk)w(z(tk)).

So by Theorem 2.3, Lemma 2.4, and z(0) = v(0) = c, this implies that

z(t) ≤ c +

t∫

0

[f(s) α(s) + 2g(s)]w(z(s)) ds

+
∑

0<tk<t

α(tk)(ak + bk)w(z(tk)).

Thus by Corollary 3.3, for all t ∈ [0,M ], we get

z(t) ≤ E−1

[
E(c) +

t∫

0

[f(s) α(s) + 2g(s)] ds +
∑

0<tk<t

α(tk)(ak + bk)

]

= E−1[γ(t)] = λ(t).
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So we have

∀t ∈ [0,M ]−Dn, m(t) = z(t) ≤ λ(t),(3.11)

and by (3.8) we get

m(tk) = akv(tk) + bk ϕ(v(tk)) ≤ akz(tk) + bk ϕ(z(tk))(3.12)

≤ akλ(tk) + bk ϕ(λ(tk)).

Thus by (3.6), (3.11) and (3.12) we have

v ′φ(t) ≤ f̃n(t)m(t)

≤ f̃n(t)
[
An(t)λ(t) +

n∑

k=1

Bk(t)[akλ(tk) + bk ϕ(λ(tk))]
]

≤ An(t)f(t)λ(t) +
n∑

k=1

Bk(t)[akλ(tk) + bk ϕ(λ(tk))].

Since v(0) = c, using Theorem 2.3 and Lemma 2.4, for all t ∈ [0,M ], we get

u(t) ≤ v(t) ≤ c +

t∫

0

f(s)λ(s) ds +
∑

0<tk<t

[akλ(tk) + bk ϕ(λ(tk))].

This completes the proof. ¤

4. Some Applications

There are many applications of the inequalities obtained in the previous section.
Here we shall apply an integral inequality that was obtained in the previous

section to obtain a bound of solutions of the following integro-differential equation
with impulses: 




x ′(t) = F (t, x(t), Λx(t)), t /∈ D,

Λx(t) =

t∫

0

K(t, σ, x(t), x( σ)) dσ,

∆x(tk) = Ik(x(rk)) + Jk(x(sk)), k ∈ N,

(4.1)

where t ∈ R+ and x(0) = x0.

In this section we assume the following conditions.
(C1) Functions x, f, g ∈ PC(R+), where f and g are all nonnegative.
(C2) A continuous function Ik, Jk : R −→ R satisfies

|Ik(x)|+ |Jk(x)| ≤ ak|x|+ bk ϕ(|x|), ak, bk ≥ 0, k ∈ N,
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where a function ϕ : R+ −→ R+ is continuous, nondecreasing on R+, and positive
on (0,∞).

(C3) Continuous functions F : R+ ×R2 −→ R, K : (R+)2 ×R2 satisfy

|F (t, u, v)| ≤ f(t)|u|+ |v|,
|K(t, s, u, v)| ≤ f(t)g(s)[|u|+ ϕ(|v|)].

Now we obtain a bounded for the equation (4.1).

Theorem 4.1. Let |x0| = c, |x(t)| = u(t),M∗ ≥ 0. Assume that, in Theorem 3.4,

γ(t) ≤ M∗ ∈ Dom(E−1), ∀t ∈ R+.

Then, there exists a nonnegative number M such that for any solution x of the
equation (4.1),

sup
t∈R+

|x(t)| ≤ M.(4.2)

Proof. If x is a solution of the equation (4.1), then we have

x(t) = x0 +

t∫

0

F (s, x(s), Λx(s)) ds +
∑

0<tk<t

[Ik(x(rk)) + Jk(x(sk))].

So we get

|x(t)| ≤ |x0|+
t∫

0

|F (s, x(s), Λx(s))| ds +
∑

0<tk<t

[|Ik(x(rk))|+ |Jk(x(sk))|]

≤ |x0|+
t∫

0

[f(s)|x(s)|+ |Λx(s)|] ds +
∑

0<tk<t

[|Ik(x(rk))|+ |Jk(x(sk))|]

≤ |x0|+
t∫

0

[
f(s)|x(s)|+

s∫

0

|K(s, σ, x(s).x( σ))|dσ

]
ds

+
∑

0<tk<t

[ak|x(rk)|+ bk ϕ(|x(sk)|)]

≤ |x0|+
t∫

0

[
f(s)|x(s)|+

s∫

0

f(s)g( σ)[|x(s)|+ ϕ(|x( σ)|)] dσ

]
ds

+
∑

0<tk<t

[ak|x(rk)|+ bk ϕ(|x(sk)|)]
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≤ |x0|+
t∫

0

f(s)

[
|x(s)|+

s∫

0

g( σ)[|x(s)|+ ϕ(|x( σ)|)] dσ

]
ds

+
∑

0<tk<t

[ak|x(rk)|+ bk ϕ(|x(sk)|)].

Since ∀t ∈ R+, γ(t) ≤ M∗ < ∞, α(t) ≥ 1 implies that

∞∫

0

f(s) ds +
∑

0<tk<∞
(ak + bk) < ∞,

by Theorem 3.4, we have

|x(t)| ≤ |x0|+
t∫

0

f(s)λ(s) ds + +
∑

0<tk<t

[akλ(tk) + bk ϕ(λ(tk))]

≤ |x0|+ E−1[M∗]

t∫

0

f(s) ds + +
∑

0<tk<t

[akE
−1[M∗] + bk ϕ(E−1[M∗])]

≤ |x0|+ E−1[M∗]

∞∫

0

f(s) ds + w(E−1[M∗])
∑

0<tk<∞
(ak + bk) ≡ M < ∞.

This implies (4.2). The proof is complete. ¤

Theorem 4.2. Assume the same conditions as in Theorem 4.1. If x is a solution
of the equation (4.1), then there is a constant c(x) which satisfies that

lim
t→∞x(t) = c(x).

And

|x(t)− c(x)| ≤
∞∫

t

f(s)

[
M +

s∫

0

g( σ)[M + ϕ(M)] dσ

]
ds

+
∑

t≤tk<∞
[akM + bk ϕ(M)].

Proof. Since ∀t ∈ R+, γ(t) ≤ M∗, 1 ≤ α(t) implies

∞∫

0

[f(s) + g(s)] ds < ∞, by the

conditions that we assumed, we have
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t∫

0

|F (s, x(s), Λx(s))| ds

≤
t∫

0

f(s)

[
|x(s)|+

s∫

0

g( σ)[|x(s)|+ ϕ(|x( σ)|)] dσ

]
ds

≤
t∫

0

f(s)

[
M +

s∫

0

g( σ)[M + ϕ(M)] dσ

]
ds

≤
∞∫

0

f(s)

[
M +

∞∫

0

g( σ)[M + ϕ(M)] dσ

]
ds < ∞.

This implies that

∞∫

0

F (s, x(s), Λx(s)) ds exists. And since
∑

0<tk<∞
(ak + bk) < ∞, we

get
∑

0<tk<t

[|Ik(x(rk))|+ |Jk(x(sk))|] ≤
∑

0<tk<t

[ak|x(rk)|+ bk ϕ(|x(sk)|)]

≤
∑

0<tk<t

[akM + bk ϕ(M)] ≤ w(M)
∑

0<tk<∞
(ak + bk) < ∞.

So there is a constant c(x) such that

lim
t→∞x(t) = lim

t→∞

[
x0+

t∫

0

F (s, x(s), Λx(s)) ds+
∑

0<tk<t

[Ik(x(rk))+Jk(x(sk))]

]
= c(x).

And

|x(t)− c(x)|=
∣∣∣∣∣x(t)−

[
x0+

∞∫

0

F (s, x(s), Λx(s)) ds+
∑

0<tk<∞
[Ik(x(rk)) + Jk(x(sk))]

]∣∣∣∣∣

=

∣∣∣∣∣

∞∫

t

F (s, x(s), Λx(s)) ds +
∑

t≤tk<∞
[Ik(x(rk)) + Jk(x(sk))]

∣∣∣∣∣

≤
∞∫

t

f(s)

[
|x(s)|+

s∫

0

g( σ)[|x(s)|+ ϕ(|x( σ)|) dσ

]
ds

+
∑

t≤tk<∞
[ak|x(rk)|+ bk ϕ(|x(sk)|)]
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≤
∞∫

t

f(s)

[
M +

s∫

0

g( σ)[M + ϕ(M)] dσ

]
ds +

∑

t≤tk<∞
[akM + bk ϕ(M)].

This completes the proof. ¤

Theorem 4.3. Assume the same conditions as in Theorem 4.1. Suppose that

|x0| >
∞∫

0

f(s)

[
M +

s∫

0

g( σ)[M + ϕ(M)] dσ

]
ds +

∑

0<tk<∞
[akM + bk ϕ(M)].

If x is a solution of the equation (4.1), then we have

x(t) 6= 0, ∀t ∈ R+.

Proof. By the triangular inequality we get

|x(t)| ≥ |x0| −
∣∣∣∣∣

t∫

0

F (s, x(s),Λx(s)) ds +
∑

0<tk<t

[Ik(x(rk)) + Jk(x(sk))]

∣∣∣∣∣

≥ |x0| −
[ ∞∫

0

f(s)

[
M +

s∫

0

g( σ)[M + ϕ(M)] dσ

]
ds +

∞∑

k=1

[akM + bk ϕ(M)]

]

> 0.

This completes the proof. ¤

Theorem 4.4. Assume the same conditions as in Theorem 4.1. Suppose that for
some positive number T

∀t ∈ [0, T ], w(t) ≡ max{t, ϕ(t)} = t.

Then, for all solutions x of the equation (4.1),

sup
t∈R+

|x(t)| −→ 0 + as |x0| −→ 0 + .(4.3)

Proof. Let L = ln(T ) +

1∫

T

ds

w(s)
. Then, since for all t ∈ (0, T ], w(t) = t, we have

E(t) =

t∫

1

ds

w(s)
= −




T∫

t

ds

s
+

1∫

T

ds

w(s)


 = −


ln(T )− ln(t) +

1∫

T

ds

w(s)




= ln(t)− L, ∀t ∈ (0, T ].
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This implies that

E−1(t) = exp(t + L), ∀t ∈ (−∞, ln(T )− L].

So, if |x0| is sufficiently small, then we have E(|x0|) = ln(|x0|) − L, and for some
nonnegative number C, and for all t ∈ R+,

λ(t) = E−1[γ(t)]

= E−1

[
E(|x0|) +

t∫

0

[f(s)α(s) + 2g(s)] ds +
∑

0<tk<t

α(tk)(ak + bk)

]

= exp

[
ln |x0| − L +

t∫

0

[f(s) α(s) + 2g(s)] ds +
∑

0<tk<t

α(tk)(ak + bk) + L

]

≤ exp

[
ln |x0|+

∞∫

0

[f(s) α(s) + 2g(s)] ds +
∑

0<tk<∞
α(tk)(ak + bk)

]

≤ C · |x0| < T.

Hence, for sufficiently small |x0|, since C|x0| < T implies ϕ(C|x0|) ≤ C|x0|, for all
t ∈ R+, we get

|x(t)| ≤ |x0|+
∞∫

0

f(s)λ(s) ds +
∑

0<tk<∞
[akλ(tk) + bk ϕ(λ(tk))]

≤ |x0|+ C|x0|
∞∫

0

f(s) ds +
∑

0<tk<∞
[akC|x0|+ bk ϕ(C|x0|)]

≤ |x0|+ C|x0|
∞∫

0

f(s) ds + C|x0|
∑

0<tk<∞
(ak + bk).

This completes the proof. ¤
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